Способы вычесть процент из числа – в уме или с помощью специальных устройств

Содержание

10 СПОСОБОВ как БЫСТРО СЧИТАТЬ В УМЕ!

Способы вычесть процент из числа - в уме или с помощью специальных устройств

Error in function saveImage: Could not save the output file '/home/jellyc5/public_html/iq230.com/cache/mozg003_images_sampledata_1_thumb_medium200_200.jpg' as a jpeg.

Error in function saveImage: Could not save the output file '/home/jellyc5/public_html/iq230.com/cache/mozg003_images_sampledata_1_thumb_large200_200.jpg' as a jpeg.

Error in function saveImage: Could not save the output file '/home/jellyc5/public_html/iq230.com/cache/Mathematic0_images_sampledata_1_thumb_medium200_200.jpg' as a jpeg.

Error in function saveImage: Could not save the output file '/home/jellyc5/public_html/iq230.com/cache/Mathematic0_images_sampledata_1_thumb_large200_200.jpg' as a jpeg.

Подробности 28 июня 2015 135723

Способность мгновенно, легко и быстро считать – одна из определяющих вашего успеха. Мы научим вас считать в уме, как компьютер. Удивите скептических знакомых и вредных учителей!

Талантливый российский ученый Михайло Ломоносов, блиставший во многих научных областях, всегда считал математику своей любимой наукой, отлично приводящей в порядок ум. Современным людям в условиях ускоренных темпов жизни умение считать устно может здорово пригодиться.

Согласитесь, намного удобнее производить вычисления, не прибегая к помощи специальных устройств – это всегда экономия времени и денежных затрат. Более того, регулярные устные вычисления – отличная гимнастика для ума, а владение быстрым счетом обычно производит впечатление на тех, кто такой способности лишен.

Научиться считать в уме просто! 

Некоторые из нас прекрасно справляются устно с такими математическими операциями, как: умножение двузначных чисел на однозначные, нахождение произведения в пределах 20 и перемножение несложных двузначных чисел.

Для кого-то подобные быстрые вычисления составляют определенную трудность, и таких людей большинство. Часто человека к этому вынуждают обстоятельства, когда без навыка быстро считать в уме не обойтись.

Обычно это математики по образованию или те, кому ежедневно приходится производить ставшие уже привычными арифметические расчеты.

Разнообразные способности, которые заложены практически в каждом при рождении, нуждаются в развитии и постоянной тренировке. Однако не так часто встречаются отдельные личности, поражающие быстротой решения сложных примеров, состоящих из трехзначных чисел. Обычному человеку бывает сложно совершить подобные действия даже в письменном варианте.

Дотянуться до таких высот реально, если научиться применять определенные разработанные учеными методики быстрого счета в уме. Чтобы в будущем радоваться результату, поражать окружающих живостью мышления, а также с целью выработки навыка устных вычислений – важны следующие элементы:

1. Приобретенные способности
Большую роль играют хорошая концентрация внимания и одновременное запоминание нескольких фактов, врожденные математические наклонности и способность логически мыслить (выделять важное, обращая внимание на второстепенное, приходя к выводам и имея доказательства).

2. Знание математических алгоритмов
Понимание математических законов, эффективные схемы вычитания и умножения должны быть заложены в памяти как результат многократного опыта. Такие алгоритмы должны при необходимости «вспоминаться» и оперативно использоваться.

3. Опыт, полученный путем регулярных тренировок
На скорость и успешный результат устного счета влияет постоянная тренировка внимания и памяти, постепенно усложняющаяся для решения задач.

Феноменальные способности и знание определенных формул не будут эффективно действовать без регулярного применения на практике. Потому «тренируйтесь» регулярно.

Методика визуального представления

Производя устные вычисления, можно помочь себе, как бы мысленно записывая их в воздухе перед собой. Запоминание промежуточных результатов в представляемых образах намного облегчает задачу счета. Эффективность будет достигаться с практикой не без следующих важных условий и умений:

  • Условие игры. Когда изобретательные родители хотят от ребенка успешного и более быстрого выполнения какой-то скучной задачи, им достаточно превратить обычный ежедневный учебный процесс в игру. Результат такой «игры» будет потрясающим. Если попытаться отыскать что-то необычное в любом самом привычном действии (в решении математических примеров в том числе), то заниматься умножением будет гораздо проще и эффективнее. При этом не забывайте, что игра должна всегда быть увлекательной и пробуждать у ребенка желание возвращаться к ней снова и снова.
  • Условие азарта. Чтобы во время игры не пропадала первоначальная увлеченность (азарт), важны ее установленные четкие правила.
  • Условие соперничества. Занимаясь в одиночку, труднее достигнуть нужного эффекта, чем соревнуясь с достойными соперниками. Осознание того, что кто-то сможет сделать лучше, заставляет стремиться к новым достижениям. Упражнения в устном счете формате небольшого коллектива дают результаты на порядок выше, чем зубрежка в одиночестве.
  • Условие фиксации личных достижений. Желание превзойти свои прежние достижения также толкает к новым вершинам. В связи с этим, фиксировать можно и скорость вычисления, и количество, и сложность примеров, решенных за определенную единицу времени.
  • Умение справляться со скучной работой. Необходимо научиться нормально воспринимать скучную, однообразную работу. Психологи рекомендуют находить разные методы борьбы со скукой. Подойдет даже изучение событий за окошком или переключение внимание на движение часовой стрелки.
  • Умение не воспринимать помехи. Если приучить себя не отвлекаться на окружающие шумы и помехи, концентрация внимания намного повысится. Есть люди, которые привыкли выполнять задания различной сложности и в небольших густонаселенных шумных квартирах, и в общежитиях, где невозможно остаться одному. Они не обращают внимания на помехи и способны выполнять решать все задачи, что от них требуются. Тренировать такую способность можно, специально – пытаясь делать вычисления при включенной музыке, телевизоре, в шумной компании.

Существует такое особое состояние (транс), когда вошедший в него человек концентрируется на чем-то определенном и перестает отвлекаться на окружающую обстановку и даже на сигналы собственного организма.

В трансе возможно сохранение самой неудобной позы в течение длительного промежутка времени. Человек, увлеченный интересным чтением или сёрфингом в интернете, может не заметить, как затекла нога или шея.

Повышенное внимание книги или интернетной статьи отвлекло от сигналов, подаваемых организмом.

Чтобы быстро справляться с устным счетом, нужно уметь пользоваться целым набором коротких, но эффективных математических правил. Решение более сложных примеров упроститься, если использование представленных ниже правил станет автоматическим, практически мгновенным.

Полезные арифметические правила:

1. Вычитание

+ При отнимании 9 от любого числа из него вычитают 10 и добавляют 1: N-10+1

321-9 = 321-10+1 = 312

+ При отнимании 8 от любого числа из него вычитают 10 и добавляют 2: N-10+2

321-8 = 321-10+2 = 313

+ При отнимании 7 от любого числа из него вычитают 10 и добавляют 3: N-10+3

321-7 = 321-10+3 = 314

2. Умножение и деление

+ Любые числа умножаются на 9 легко и просто: следует умножить заданное число на 10 (или просто приписать ноль), а от полученного числа отнять исходное:Nх9 = Nx10 – N63х9 = 630 – 63 = 567

Это самый быстрый способ произвести подобные вычисления. Его рекомендуем довести до полного втомата.

+ Некруглые числа умножаются на 2 таким нехитрым способом: сначала их округляют до удобных для умножения ближайших значений. Например, если необходимо посчитать 149х2, то проще для начала умножить 150 на 2, а после вычесть из результата 2 (1х2 = 2 – ведь это 1 не хватало нам до 150). Итого получаем пример:

149х2 = 150х2 – (1х2) = 298

+ По схожему принципу можно делить на 2 некруглые числа: округляется число, которое делят на 2, и из него вычитают. Делим это число на 2-ку, отнимаем 1 (последняя цифра получена в процессе деления прибавленной 2-ки на 2-ку.
В результате деление 198 на 2 равняется: 200:2 – 2:2 = 100 – 1 = 99!

+ Умножение, как и деление на 4 и 8, соответствуют двукратному и трехкратному умножению и делению на 2 в каждом случае конкретном случае. Действия производятся последовательно, например: 26х4 = 26х2х2 = 52х2 = 104

88/8 = 88/2/2/2 = 44/2/2 = 22/2 = 11

+ Математики вывели закономерность, по которой умножение на 5 практически приравнивается к делению на 2. Пример: 33х5 = 165, 33:2 = 16,5Из этого следует, что при умножении на 5 любого из чисел, его стоит разделить на 2, а после этого умножить на 10:

68х5 = 68:2х10 = 34х10 = 340

+ Чтобы умножить какое-то число на 25, иногда проще его разделить на 4, а после увеличить в 100 раз (или приписать два нуля). Ведь умножение на 25 отчасти эквивалентно делению на 4:
8х25 = 8:4х100 = 200

+ Неслабые трудности при вычислениях в уме представляет умножение двузначных и трехзначных чисел на однозначные. Чтобы справиться и с этим, необходимо разряды многозначных чисел перемножать по очереди (начиная слева направо).

При умножении 54 на 3 для начала перемножаем 5 и 3, дописывая ноль (учтем, что это разряд десятков). После этого складываем результат с произведением 4х3.

54х3 = 5х3х10+4х3 = 150+12 = 162Попробуем умножить на однозначное трехразрядное число:

541х3 = 5х3х100+4х3х10+1х3 = 1500+120+3 = 1623

Прогнозирование конечного результата при счете в уме

В операциях умножения, особенно если приходится оперировать многозначными числами, можно легко сбиться с толку и ошибиться с результатом. Во избежание этого нужно грамотно «прогнозировать» ответ.

  • Перемноженные между собой однозначные числа не дадут произведения, большего 81. Ведь 9х9 = 81.
  • При умножении двузначных чисел конечный итог не превысит 10 000, так как 99х99 = 9801.
  • Произведение двух трехзначных чисел не будет больше 1 000 000. Ведь 999х999 = 998001.
  • Важно помнить деление 1000 на 2, 4, 8, 16. Всегда пригодится держать в голове результат деления чисел, кратных 10 и чисел, кратных 2: 1000 = 2х500 = 4х250 = 8х125 = 16х62,5.

Перечисленные выше формулы являются основными для устного счета. Преодоление трудностей со сложными примерами – в регулярных упражнениях. Доведение до автоматизма арифметических операций позволит вам решать просто неподъемные для обычного человека математические задачки. Восхищайте своими интеллектуальными способностями окружающих!

Источник: https://iq230.com/399-10-sposobov-kak-bystro-schitat-v-ume

Как отнять проценты от числа: три эффективных способа

Способы вычесть процент из числа - в уме или с помощью специальных устройств

В жизни рано или поздно каждый столкнется с ситуацией, когда необходимо будет работать с процентами. Но, к сожалению, большинство людей не готовы к таким ситуациям. И данное действие вызывает затруднения.

В этой статье будет рассказано, как отнять проценты от числа. Более того, разобраны будут различные способы решения задачи: от самого простого (с помощью программ) до одного из сложнейших (с помощью ручки и листка).

Отнимаем вручную

Сейчас мы узнаем, как отнять процент от числа с помощью ручки и листка. Действия, которые будут представлены ниже, изучает абсолютно каждый человек еще в школе. Но по какой-то из причин не каждый запомнил все манипуляции. Итак, что вам будет нужно, мы уже разобрались.

Теперь расскажем, что необходимо делать. Чтобы было более понятно, рассматривать будем пример, беря за основу конкретные числа. Допустим, вы хотите отнять 10 процентов от числа 1000. Конечно, вполне возможно эти действия провернуть в уме, так как задача очень проста.

Главное, понять саму суть решения.

В первую очередь вам необходимо записать пропорцию. Допустим, у вас есть две колонки с двумя рядами. Запомнить нужно одно: в левый столбец вписываются числа, а в правый – проценты. В левой колонке будет записано два значения – 1000 и X. Икс вписан потому, что именно он символизирует число, которое нужно будет найти. В правой колонке будут вписаны – 100% и 10%.

Теперь получается, что 100% – это число 1000, а 10% – X. Чтобы найти икс, нужно 1000 умножить на 10. Полученное значение делим на 100. Запомните: необходимый процент нужно всегда умножать на взятое число, после чего произведение следует поделить на 100%. Формула выглядит так: (1000*10)/100. На картинке будут наглядно изображены все формулы по работе с процентами.

У нас получилось число 100. Именно оно и кроется под тем самым иксом. Теперь все, что остается сделать, это от 1000 отнять 100. Получается 900. Вот и все. Теперь вы знаете, как отнять проценты от числа с помощью ручки и тетради. Потренируйтесь самостоятельно. И со временем данные действия вы сможете совершать в уме. Ну а мы двигаемся дальше, рассказывая о других способах.

Отнимаем с помощью калькулятора Windows

Ясное дело: если под рукою есть компьютер, то мало кто захочет применить для подсчетов ручку и тетрадь. Проще воспользоваться техникой.

Именно поэтому сейчас рассмотрим, как отнять проценты от числа с помощью калькулятора Windows. Однако стоит сделать небольшую ремарку: многие калькуляторы способны совершать эти действия.

Но пример будет показан именно с использованием калькулятора Windows для большего понимания.

Здесь все просто. И очень странно, что мало кто знает, как отнять проценты от числа в калькуляторе. Изначально откройте саму программу. Для этого войдите в меню “Пуск”. Далее выберите “Все программы”, после чего перейдите в папку “Стандартные” и выберите “Калькулятор”.

Теперь все готово для того, чтобы приступить к решению. Оперировать будем теми же числами. У нас есть 1000. И от нее нужно отнять 10%. Все что нужно – ввести в калькулятор первое число (1000), далее нажать минус (-), после чего кликнуть на процент (%). Как только вы это сделали, вам сразу покажется выражение 1000-100. То есть калькулятор автоматически посчитал, сколько это 10% от 1000.

Теперь нажмите Enter или же равно (=). Ответ: 900. Как можно заметить, и первый, и второй способ привел к одному и тому же итогу. Поэтому решать только вам, каким способом пользоваться. Ну, а мы тем временем переходим к третьему, последнему варианту.

Отнимаем в Excel

Многие люди пользуются программой Excel. И бывают такие ситуации, когда жизненно необходимо быстро произвести расчет в этой программе. Именно поэтому сейчас разберемся, как отнять процент от числа в Excel. В программе это сделать очень просто, используя формулы.

К примеру, у вас есть колонка со значениями. И вам нужно от них отнять 25%. Для этого выделите колонку рядом и в поле для формул впишите равно (=). После этого нажмите ЛКМ по ячейке с числом, далее ставим “-” (и опять кликаем на ячейку с числом, после этого вписываем – “*25%).

У вас должно получиться, как на картинке.

Как можно заметить, эта все та же формула, что и приводилась в первый раз. После нажатия Enter вы получите ответ. Чтобы быстро отнять 25% ото всех чисел в колонке, достаточно лишь навести курсор на ответ, разместив его в нижнем правом углу, и протянуть вниз на нужное количество ячеек. Теперь вы знаете, как в “Эксель” отнять процент от числа.

Вывод

Напоследок хочется сказать лишь одно: как можно видеть из всего вышесказанного, во всех случаях используется лишь одна формула – (x*y)/100. И именно с ее помощью у нас и получилось решить задачу всеми тремя способами.

Источник: https://FB.ru/article/287276/kak-otnyat-protsentyi-ot-chisla-tri-effektivnyih-sposoba

Как быстро считать в уме: приемы устного счета больших чисел

Способы вычесть процент из числа - в уме или с помощью специальных устройств

Образец

Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а  минимум двухзначными и трехзначными числами.

После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью “Пределы для чайников” в нашем блоге.

Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

Гаусс и устный счет

Карл Фридрих Гаусс

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить.  Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6.  Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Вычитание чисел в уме

Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.

Теперь считаем: 528-300-20-1=228-20-1=208-1=207

Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

8*4=8+8+8+8=32

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Таблица умножения

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число – результат умножения исходного числа на 11.

Проверим и умножим 54 на 11.

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами – эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

Проверим! Возведем в квадрат число 75.

Раньше все считали без калькуляторов

Деление чисел в уме

Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

Деление на однозначное число

При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:

6144:8=(5600+544):8=700+544:8

Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:

544:8=(480+64):8=60+64:8

Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

64:8=8

6144:8=700+60+8=768

Деление на двузначное число

При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет 0, так как 5*6=30. Действительно, 1325*656=869200.

Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

Сколько будет 4424:56?

Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.

56*80=4480

Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4.

Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления  может быть либо число 74, либо 79.

Проверяем:

79*56=4424

Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.

Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»

Полезные советы

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Источник: https://Zaochnik-com.ru/blog/kak-bystro-schitat-v-ume-priemy-ustnogo-scheta-bolshix-chisel/

Эффективный счёт в уме или разминка для мозга

Способы вычесть процент из числа - в уме или с помощью специальных устройств

Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.

Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно.

Для его учеников не было особой проблемой посчитать подобный пример в уме:

Используем круглые числа

Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:

Т.к. на 10, 100, 1000 и др.

круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10. Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190.

Еще пример:31 x 29 = (30 + 1) x (30 – 1) = 30 x 30 – 1 x 1 = 900 – 1 = 899.

Упростим умножение делением

При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2, а 50 в виде 100:2):
68 x 50 = (68 x 100) : 2 = 6800 : 2 = 3400;3400 : 50 = (3400 x 2) : 100 = 6800 : 100 = 68.
Аналогично выполняется умножение или деление на 25, ведь 25 = 100:4.

Например,
600 : 25 = (600 : 100) x 4 = 6 x 4 = 24;24 x 25 = (24 x 100) : 4 = 2400 : 4 = 600.

Теперь не кажется невозможным умножить в уме 625 на 53:
625 x 53 = 625 x 50 + 625 x 3 = (625 x 100) : 2 + 600 x 3 + 25 x 3 = (625 x 100) : 2 + 1800 + (20 + 5) x 3 = = (60000 + 2500) : 2 + 1800 + 60 + 15 = 30000 + 1250 + 1800 + 50 + 25 = 33000 + 50 + 50 + 25 = 33125.

Возведение в квадрат двузначного числа

Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25. Благо, квадраты до 10 мы уже знаем из таблицы умножения.

Остальные квадраты можно посмотреть в нижеприведённой таблице:

Приём Рачинского заключается в следующем.

Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю. Например,

372 = 12 x 100 + 132 = 1200 + 169 = 1369; 842 = 59 x 100 + 342 = 5900 + 9 x 100 + 162 = 6800 + 256 = 7056;
В общем случае (M — двузначное число): Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые: 1952 = (100 + 95)2 = 10000 + 2 x 100 x 95 + 952 = 10000 + 9500 x 2 + 70 x 100 + 452 = 10000 + (90+5) x 2 x 100 + + 7000 + 20 x 100 + 52 = 17000 + 19000 + 2000 + 25 = 38025. Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться. И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.

Умножение двузначных чисел

Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.

Пусть даны два двузначных числа, у которых сумма единиц равна 10: M = 10m + n, K = 10a + 10 – n. Составив их произведение, получим:

Например, вычислим 77 x 13. Сумма единиц этих чисел равна 10, т.к.

7 + 3 = 10. Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77.

Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77. Теперь перемножим новые числа 80 x 10, а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10:
13 x 77 = 10 x 80 + 3 x (77 – 10) = 800 + 3 x 67 = 800 + 3 x (60 + 7) = 800 + 3 x 60 + 3 x 7 = 800 + 180 + 21 = 800 + 201 = 1001. У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.

48 x 42. Число десятков 4, последующее число: 5; 4 x 5 = 20. Произведение единиц: 8 x 2 = 16. Значит,

48 x 42 = 2016.
99 x 91. Число десятков: 9, последующее число: 10; 9 x 10 = 90. Произведение единиц: 9 x 1 = 09. Значит, 99 x 91 = 9009.
Ага, то есть, чтобы перемножить 95 x 95, достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:
95 x 95 = 9025. Тогда предыдущий пример можно вычислить немного проще: 1952 = (100 + 95)2 = 10000 + 2 x 100 x 95 + 952 = 10000 + 9500 x 2 + 9025 = 10000 + (90+5) x 2 x 100 + 9000 + 25 = = 10000 + 19000 + 1000 + 8000 + 25 = 38025.

Вместо заключения

Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать ую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.

Использованная литература:

«1001 задача для умственного счёта в школе С.А. Рачинского».

  • устный счет
  • математика и реальная жизнь

Источник: https://habr.com/post/207034/

Устный счет: техника быстрого счета в уме

Способы вычесть процент из числа - в уме или с помощью специальных устройств

Зачем считать в уме, если решить любую арифметическую задачу можно на калькуляторе. Современная медицина и психология доказывают, что устный счет – это тренаж для серых клеточек. Выполнять такую гимнастику необходимо для развития памяти и математических способностей.

Известно множество приёмов для упрощения вычислений в уме. Все, кто видел знаменитую картину Богданова-Бельского «Устный счёт», всегда удивляются – как крестьянские дети решают такую непростую задачу, как деление суммы из пяти чисел, которые предварительно ещё надо возвести в квадрат?

Оказывается, эти дети – ученики известного педагога-математика Сергея Александровича Рачицкого (он также изображен на картине). Это не вундеркинды – ученики начальных классов деревенской школы XIX века. Но все они уже знают приёмы упрощения арифметических расчетов и выучили таблицу умножения! Поэтому решить такую задачку этим детишкам вполне под силу!

Секреты устного счёта

Существуют приемы устного счета простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Примеры:

56+7=56+10-3=63

47+8=47+10-2=55

73+9=73+10-1=82

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Примеры:

54+39=54+40-1=93

26+38=26+40-2=64

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем – единицы.

Пример:

57+32=57+30+2=89

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

32+57=32+60-3=89

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел – это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Пример:

249+533=(200+500)+(40+30)+(9+3)=782

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Примеры:

67-9=67-10+1=58

576-88=576-100+12=488

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Пример:

843-596=843-500-90-6=343-90-6=253-6=247 

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения – это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения – с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

15*16=15*10+(10*6+5*6)=150+60+30=240

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

  • умножить на 4 – это дважды умножить на 2;

  • умножить на 6 – это значит умножить на 2, а потом на 3;

  • умножить на 8 – это трижды умножить на 2;

  • умножить на 9 – это дважды умножить на 3.

Например:

37*4=(37*2)*2=74*2=148;

412*6=(412*2)·3=824·3=2472

Аналогично:

  • разделить на 4 – это дважды разделить на 2;

  • разделить на 6 – это сначала разделить на 2, а потом на 3;

  • разделить на 8 – это трижды разделить на 2;

  • разделить на 9 – это дважды разделить на 3.

Например:

412:4=(412:2):2=206:2=103

312:6=(312:2):3=156:3=52

Как умножать и делить на 5

Число 5 – это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Пример:

326*5=(326*10):2=3260:2=1630

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

326:5=(326·2):10=652:10=65,2.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

37*9=(37*3)*3=111*3=333

или

37*9=37*10 – 37=370-37=333

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма.

Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение.

Встречаются такие задачи очень редко – это примеры занимательные, так называемые маленькие хитрости.

Счет на пальцах

Сегодня еще можно встретить много защитников «пальчиковой гимнастики» и методики устного счета на пальцах.

Нас убеждают, что учиться складывать и отнимать, загибая и разгибая пальцы – это очень наглядно и удобно. Диапазон таких вычислений очень ограничен.

Как только расчеты выходят за рамки одной операции возникают трудности: надо осваивать следующий прием. Да и загибать пальцы в эпоху айфонов как-то несолидно.

Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:

  • Чтобы умножить любое число в пределах первой десятки на 9, надо развернуть ладони к себе.
  • Отсчитывая слева направо, загнуть палец, соответствующий умножаемому числу. К примеру, чтобы умножить 5 на 9, надо загнуть мизинец на левой руке.
  • Оставшееся количество пальцев слева будет соответствовать десяткам, справа – единицам. В нашем примере – 4 пальца слева и 5 справа. Ответ: 45.

Да, действительно, решение быстрое и наглядное! Но это – из области фокусов. Правило действует только при умножении на 9.  А не проще ли, для умножения 5 на 9 выучить таблицу умножения?  Этот фокус забудется, а хорошо выученная таблица умножения останется навсегда.

Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь. 

Устный счёт на автомате

  • Во-первых, необходимо хорошо знать состав числа и таблицу умножения.

  • Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.

  • В-третьих, чтобы приём превратился в удобный навык, надо постоянно проводить краткие «мозговые штурмы» – упражняться в устных вычислениях, используя тот или иной алгоритм.

Тренировки должны быть короткими: решить в уме по 3-4 примера, используя один и тот же приём, затем переходить к следующему. Надо стремиться использовать любую свободную минутку – и полезно, и нескучно. Благодаря простым тренировкам все вычисления со временем будут совершаться молниеносно и без ошибок. Это очень пригодится в жизни и выручит в непростых ситуациях.

Источник: https://myintelligentkids.com/ustnyj-schet-texnika-bystrogo-scheta-v-ume

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.