Способы найти угол в прямоугольном треугольнике – формулы вычисления

Содержание

Задачи №6. Прямоугольный треугольник. Вычисление углов

Способы найти угол в прямоугольном треугольнике - формулы вычисления

Елена Репина 2013-07-19 2019-08-17

Вам может быть полезно заглянуть сюда, чтобы вспомнить свойства прямоугольного треугольника.

Итак, сегодня вычисляем

Часть 1.

Задача 1

Один острый угол прямоугольного треугольника на   больше другого. Найдите больший острый угол. Ответ дайте в градусах.

 Решение: + показать

Пусть один из острых углов треугольника равен   градусов,  тогда  согласно условию задачи второй острый угол  равен градусов.

Поскольку на острые углы прямоугольного треугольника приходится , то 

Тогда больший угол равен

Ответ: 75. 

Задача 2

Один острый угол прямоугольного треугольника в 29 раз больше другого. Найдите больший острый угол. Ответ дайте в градусах.

Решение: + показать

Пусть один из острых углов треугольника  равен градусов,  тогда  согласно условию задачи второй острый угол градусов.

Так как сумма острых углов прямоугольного треугольника равна 90 градусов, то

Тогда больший острый угол равен

Ответ: 87. 

Задача 3

В треугольнике ABC угол C равен 90°, CH — высота, угол A равен  . Найдите угол BCH. Ответ дайте в градусах.

Решение: + показать

Из прямоугольного треугольнике

Тогда, так как угол – прямой, то

Ответ: 89. 

Задача 4

Острый угол прямоугольного треугольника равен . Найдите острый угол, образованный биссектрисами этого и прямого углов треугольника. Ответ дайте в градусах.

Решение: + показать

Способ 1.

Из треугольника  :

Тогда острый угол между биссектрисами будет

Способ 2.

Если вы помните теорему о внешнем угле треугольника, то получите ответ чуть быстрее.

Ответ: 58. 

Задача 5

Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.

Решение: + показать

по свойству внешнего угла треугольника.

Как известно,

Значит, так как и – биссектрисы углов и , то

Ответ: 45. 

Задача 6.

В прямоугольном треугольнике угол между высотой и биссектрисой, проведенными из вершины прямого угла, равен . Найдите меньший угол данного треугольника. Ответ дайте в градусах.

Решение: + показать

Так как   – биссектриса угла , то

А так как по условию то  

Значит,  в прямоугольном треугольнике

Угол и есть меньший угол данного прямоугольного треугольника.

Ответ: 24. 

Задача 7.

Острые углы прямоугольного треугольника равны  и . Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Решение: + показать

Обратите внимание на эту задачу. Она может оказаться  сложной, если не знать одного очень важного свойства медианы, проведенной к гипотенузе.

А именно:

Медиана, проведенная к гипотенузе, равна ее половине.

Значит, треугольники и – равнобедренные.

Ответ: 62. 

Часть 2.

Нахождение  значений синусов, косинусов, тангенсов углов  в прямоугольном треугольнике

Вы должны знать как находить  синус, косинус, тангенс угла в прямоугольном треугольнике.

А также знать некоторые связи между острыми углами прямоугольного треугольника (не только то, что их сумма равна 90 градусов, но и как они связаны при помощи тригонометрических функций), а также что еще связывает смежные углы помимо того, что их сумма 180 градусов.  Заглянув сюда, вы  найдете компактные таблицы-шпаргалки с необходимым справочным материалом для решения задач, что мы здесь рассматриваем. 

Задача 1.

В треугольнике   угол   равен 90°,   Найдите

Решение: + показать

https://www.youtube.com/watch?v=7uIBZPkUdeI

Углы и в сумме дают , поэтому

(применили формулы приведения).

Ответ: 0,1. 

Задача 2.

В треугольнике ABC угол C равен 90°,  Найдите

Решение: + показать

По сути, и чертеж нам не нужен. Мы будем работать с основными тригонометрическими формулами.

Поскольку угол – острый угол прямоугольного треугольника, то

Ответ: 0,2. 

Задача 3.

В треугольнике ABC угол C равен 90°,   Найдите

Решение: + показать

Сначала найдем из основного тригонометрического тождества:

Поскольку имеем дело с острым углом , то  положителен.

Тогда

Ответ: 1,75. 

Задача 4.

В треугольнике  угол  равен 90°,  Найдите

Решение: + показать

, так как

Из основного тригонометрического тождества, о котором уже говорилось, имеем:

Ответ: 0,96. 

Задача 5.

В треугольнике  угол  равен 90°,  Найдите  

Решение: + показать

В задаче можно обращаться к тригонометрическим тождествам, но мы поступим так:

Пусть , тогда .

По теореме Пифагора () имеем:

Тогда

Ответ: 0,28. 

Задача 8.

В треугольнике ABC угол C равен 90°, косинус внешнего угла при вершине A равен   Найдите .

Решение: + показать

Уже говорили о том, что , поэтому

Берем положительное значение , так как угол – острый:

Ответ: 0,5. 

Дожили до конца статьи? 🙂

Отдых не помешает!

ПРОДОЛЖЕНИЕ. Смотрите также статью  «Прямоугольный треугольник. Вычисление длин».

egeMax |

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Печать страницы

Источник: https://egemaximum.ru/pryamougolnyj-treugolnik-vychislenie-uglov/

Как найти угол в прямоугольном треугольнике | Сделай все сам

Способы найти угол в прямоугольном треугольнике - формулы вычисления

  • Таблица синусов и косинусов, таблица Брадиса

Инструкция

1. Обозначим углы треугольника буквами A, B и C, как это показано на рисунке. Угол BAC равен 90º, два других угла обозначим буквами α и β. Катеты треугольника обозначим буквами a и b, а гипотенузу буквой c.

2. Тогда sinα = b/c, а cosα = a/c.Подобно для второго острого угла треугольника: sinβ = a/c, а cosβ = b/c.В зависимости от того, какие стороны нам вестимы, вычисляем синусы либо косинусы углов и глядим по таблице Брадиса значение α и β.

3. Обнаружив один из углов, дозволено припомнить, что сумма внутренних углов треугольника равна 180º. Значит, сумма α и β равна 180º – 90º = 90º.Тогда, вычислив значение для α по таблицам, можем для нахождения β воспользоваться дальнейшей формулой: β = 90º – α

4. Если незнакома одна из сторон треугольника, то применяем теорему Пифагора: a²+b²=c². Выведем из нее выражение для незнакомой стороны через две другие и подставим в формулу для нахождения синуса либо косинуса одного из углов.

Совет 2: Как обнаружить гипотенузу в прямоугольном треугольнике

Гипотенузой называют сторону в прямоугольном треугольнике, лежащую наоборот прямого угла. Гипотенуза является самой длинной стороной в прямоугольном треугольнике. Остальные стороны в прямоугольном треугольнике именуются катетами.

Вам понадобится

  • Базовые познания геометрии.

Совет 3: Как обнаружить острый угол в прямоугольном треугольнике

Прямоугольный треугольник, возможно, – одна из самых вестимых, с исторической точки зрения, геометрических фигур. Пифагоровым “штанам” конкуренцию может составить лишь “Эврика!” Архимеда.

Вам понадобится

  • – чертеж треугольника;
  • – линейка;
  • – транспортир.

Совет 4: Как обнаружить неведомую сторону в треугольнике

Метод вычисления неведомой стороны треугольника зависит не только от условий задания, но и от того, для чего это делается.

С сходственной задачей сталкиваются не только школьники на уроках геометрии, но и инженеры, работающие в различных отраслях производства, дизайнеры интерьера, закройщики и представители многих других профессий.

Точность вычислений для различных целей может быть различной, но правило их остается тем же самым, что и в школьном задачнике.

Вам понадобится

  • – треугольник с заданными параметрами;
  • – калькулятор;
  • – ручка;
  • – карандаш;
  • – транспортир;
  • – лист бумаги;
  • – компьютер с программой AutoCAD;
  • – теоремы синусов и косинусов.

Совет 5: Как вычислить угол в прямоугольном треугольнике

Прямоугольный треугольник составляют два острых угла, величина которых зависит от длин сторон, а также один угол неизменно постоянной величины 90°. Вычислить размер острого угла в градусах дозволено с применением тригонометрических функций либо теоремы о сумме углов в вершинах треугольника в евклидовом пространстве.

Самая удобная и увлекательная подготовка к ЕГЭ

Способы найти угол в прямоугольном треугольнике - формулы вычисления

Прямоугольный треугольник – это треугольник, у которого один угол прямой (равен $90$ градусов).

Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.

3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.) 

4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$. 

5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$ 

6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$ 

7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника. 

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС2+ВС2=АВ2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$ 

Для острого угла $В$: $АС$ – противолежащий катет; $ВС$ – прилежащий катет.

Для острого угла $А$: $ВС$ – противолежащий катет; $АС$ – прилежащий катет.

1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

В прямоугольном треугольнике $АВС$  для острого угла $В$:

$sin⁡B={AC}/{AB};$

$cos⁡B={BC}/{AB};$

$tgB={AC}/{BC};$

$ctgB={BC}/{AC}.$

5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.

6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.

7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

$sin BOA=sin BOC;$

$cos BOA=-cos BOC;$

$tg BOA=-tg BOC;$

$ctg BOA=-ctg BOC.$

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$${1}/{2}$${√2}/{2}$${√3}/{2}$
$cosα$${√3}/{2}$${√2}/{2}$${1}/{2}$
$tgα$${√3}/{3}$$1$$√3$
$ctgα$$√3$$1$${√3}/{3}$

Площадь прямоугольного треугольника равна половине произведения его катетов

$S={AC∙BC}/{2}$

Пример:

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $АВ=10, АС=√{91}$. Найдите косинус внешнего угла при вершине $В$.

Решение:

Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то

$cosABD=-cosABC$

Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:

$cosABC={ВС}/{АВ}$

Катет $ВС$ мы можем найти по теореме Пифагора:

$ВС=√{102-√{91}2}=√{100-91}=√9=3$

Подставим найденное значение в формулу косинуса

$cos ABC = {3}/{10}=0,3$

$cos ABD = – 0,3$

Ответ: $-0,3$

Пример:

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $sin⁡A={4}/{5}, AC=9$. Найдите $АВ$.

Решение:

Распишем синус угла $А$ по определению:

$sin⁡A={ВС}/{АВ}={4}/{5}$

Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.

Применим теорему Пифагора, чтобы отыскать $«х»$

$АС2+ВС2=АВ2$

$92+(4х)2=(5х)2$

$81+16х2=25х2$

$81=25х2-16х2$

$81=9х2$

$9=х2$

$х=3$

Так как длина $АВ$ составляет пять частей, то $3∙5=15$

Ответ: $15$

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

$CD2=DB∙AD$

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

$CB2=AB∙DB$

$AC2=AB∙AD$

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

$AC∙CB=AB∙CD$

Источник: https://examer.ru/ege_po_matematike/teoriya/pryamougolnie_treugolniki

Гипотенуза в прямоугольном треугольнике

Способы найти угол в прямоугольном треугольнике - формулы вычисления

Гипотенуза – это самая длинная сторона прямоугольного треугольника. Она лежит напротив прямого угла. Длина гипотенузы может быть найдена различными способами.

Если известна длина обоих катетов, то ее размер вычисляется по теореме Пифагора: сумма квадратов двух катетов равняется квадрату гипотенузы.

Соответственно длина гипотенузы в прямоугольном треугольнике вычисляется по формуле:

К примеру: катет a = 3 см, катет b = 4 см.
Чтобы найти длину гипотенузы в прямоугольном треугольнике, подставим числа в формулу. =5 см

Преобразовав эту формулу можно найти и длину одного неизвестного катета.

,

В случае если известна длина катета A и гипотенузы C, угол α можно определить по формуле:
Второй угол будет вычисляться так: β = 180°-90°-α.

Зная, что сумма всех углов составляет 180°, вычитаем прямой угол и уже известный.

К примеру: A = 3 см, C=5 см, подставляем значения в формулу: =0,6
По таблицу синусов угол α будет приблизительно равен 36°, соответственно угол β = 54°.

Если по условиям даны параметры двух катетов, то можно найти острый угол по следующей формуле:

К примеру: A = 3 см, B = 4 см
Подставляем значения в формулу =0,75
По таблице тангенсов угол α будет равняться 36°, соответственно угол β = 54°.

Также стороны прямоугольного треугольника можно найти по различным формулам в зависимости от количества известных переменных.

ABC

При расчете параметров прямоугольного треугольника важно обращать внимание на известные значения и решать задачу по самой простой формуле.

Чтобы найти объем конуса необходимо произвести дополнительные построения.

Построим вписанную в конус правильную n-угольную пирамиду и опишем вокруг данного конуса правильную n-угольную пирамиду.Вписанная пирамида содержится в конусе. Из этого следует, что ее объем не больше объема конуса.

Описанная пирамида содержит конус, а это значит, что ее объем не меньше объема конуса.

Впишем в основание вписанной пирамиды окружность.
Если радиус вписанного правильного n-угольника равен R, то радиус вписанной в него окружности будет равен:

Объем вписанной пирамиды вычисляется по формуле:

где S – основание пирамиды.
Площадь данного круга вычисляется по формуле: Площадь основания вписанной пирамиды не меньше площади круга, содержащегося в ней

Поэтому утверждение, что объем вписанной в конус пирамиды не меньше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий эту пирамиду будет больше или равен
V≥

Теперь опишем окружность вокруг основания описанной вокруг конуса пирамиды.
Радиус этой окружности будет равен:

Площадь данного круга вычисляется по формуле:
Основание описанной пирамиды содержится в круге описанном вокруг него. Поэтому площадь основания пирамиды не больше
Поэтому утверждение,что объем описанной пирамиды не больше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий в эту пирамиду будет меньше или равен

Два полученных неравенства равны при любом n.

Если то
Тогда из первого неравенства следует, что V≥
Из второго неравенства

Отсюда следует, что

Объем конуса равен одной трети произведения радиуса на высоту.

Пример расчета объема конусаНайти объем конуса, если его радиус основания равен 3 см, а образующая 5 см.

Объем конуса вычисляется по формуле:

Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и радиус основания образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора имеем:

Отсюда:

Подставим значение радиуса и высоты в формулу объема конуса.Имеем:

Page 3

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса.

Дополним данный усеченный конус до полного . Пусть его высота будет x . Если высота усеченного конуса – h , то высота отсеченного конуса будет – x-h .

Высота усеченного конуса будет равна разности объема полного конуса с радиусом R1и высотой x и объема полного конуса с радиусом R2. и высотой x-h.

Из подобия этих конусов получаем:
Выразим x:

Тогда объем усеченного конуса можно выразить:
Применив формулу разницы кубов, имеем:

Таким образом, формула объема усеченной пирамиды имеет вид:

Пример расчета объема усеченного конусаРадиусы основания усеченного конуса равны 11 и 27 , образующая относится к высоте как 17:15 . Найдите объем усеченного конуса.

Объем усеченного конуса вычисляется по формуле:
Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и разница радиусов оснований образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора получаем: Так как образующая относится к высоте как 17:15, то L=17x, H=15x.

Тогда:

Тогда высота усеченного конуса будет равна:

Подставим значения в формулу объема усеченного конуса. Получим:

Page 4

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом.

Формула площади сектора кольца, выраженная через внешний и внутренний радиусы

Пусть дана окружность радиуса R и окружности радиуса r. Причем R>r. Совместим центры этих окружностей. Возьмем на окружности с большим радиусом две произвольные точки. Проведем к ним радиусы, которые образуют угол α. Эти радиусы отсекут от окружностей некоторые дуги.

Фигура, заключенная между этими дугами окружностей и радиусами, проведенными к концам этих дуг, и будет сектор кольца, у которого R является внешним радиусом, r -внутренним радиусом.Тогда площадь этой фигуры будет равна разницы между площадью сектора круга с большим радиусом и площадью сектора круга с меньшим радиусом.

Площадь сектора круга с радиусом r выражается формулой:

где l–длина дуги равная Подставим выражение длины дуги в формулу площади сектора. Получим:
Площадь круга с радиусом R выражается формулой:
где L–длина дуги равная Подставим выражение длины дуги в формулу площади сектора.

Получим:

Тогда площадь кольца будет равна:Таким образом, площадь сектора кольца равна произведению площади единичного сектора кольца, то есть сектору, соответствующему центральному углу с мерой равной единице на меру центрального угла, соответствующего данному сектору.
Формула имеет вид:

Пример расчета площади сектора кольца, если известны его радиусы.Найдите площадь сектора кольца, образованного углом 30° , если его внешний радиус равен 14, а внутренний – 8.Площадь кольца вычисляется по формуле:

Подставив значения из условия задачи, имеем:

Page 5

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Page 6

У большинства детей младшего школьного возраста хорошо развита механическая память, которая задействуется при выучивании правил.

Но для отдельных детей, а особенно творческих личностей, зубрежка является невыносимой.

Родители, думающие, что их чадо не способно освоить изучение таблицы умножения и поэтому в дальнейшем будет отставать в математике, заблуждаются. На самом деле к нему нужен совершенно другой, особый подход.

Читать далее

Ниже представлена таблица степеней от 2 до 10 натуральных чисел от 1 до 20.
Читать далее

Таблица кубов натуральных чисел от 1 до 100
Читать далее

Таблица факториалов от 1 до 40
Читать далее

Page 7

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Источник: https://2mb.ru/matematika/geometriya/gipotenuza-v-pryamougolnom-treugolnike/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.