Прямые на плоскости и в пространстве – теоремы, правила

Содержание

Взаимное расположение прямых в пространстве

Прямые на плоскости и в пространстве - теоремы, правила

Возможны четыре различных случая расположения двух прямых в пространстве:

– прямые скрещивающиеся, т.е. не лежат в одной плоскости;

– прямые пересекаются, т.е. лежат в одной плоскости и имеют одну общую точку;

– прямые параллельные, т.е. лежат в одной плоскости и не пересекаются;

– прямые совпадают.

Получим признаки этих случаев взаимного расположения прямых, заданных каноническими уравнениями

где — точки, принадлежащие прямым и соответственно, a — направляющие векторы (рис.4.34). Обозначим через вектор, соединяющий заданные точки.

Перечисленным выше случаям взаимного расположения прямых и соответствуют следующие признаки:

– прямые и скрещивающиеся векторы не компланарны;

– прямые и пересекаются векторы компланарны, а векторы не коллинеарны;

– прямые и параллельные векторы коллинеарны, а векторы не коллинеарны;

– прямые и совпадают векторы коллинеарны.

Эти условия можно записать, используя свойства смешанного и векторного произведений. Напомним, что смешанное произведение векторов в правой прямоугольной системе координат находится по формуле:

Равенство нулю смешанного произведения векторов является необходимым и достаточным условием их компланарности. Поэтому:

– прямые и скрещивающиеся определитель отличен от нуля;

– прямые и пересекаются определитель равен нулю, а вторая и третья его строки не пропорциональны, т.е.

– прямые и параллельные вторая и третья строки определителя пропорциональны, т.е. а первые две строки не пропорциональны, т.е.

– прямые и совпадают все строки определителя пропорциональны, т.е.

Расстояние между параллельными прямыми

Найдем расстояние между параллельными прямыми, заданными каноническими уравнениями (рис.4.35)

где — произвольные точки на прямых и соответственно, а координаты направляющих векторов прямых пропорциональны:

Искомое расстояние равно высоте параллелограмма, построенного на векторах и , и может быть найдено по формуле (4.35).

Расстояние между скрещивающимися прямыми

Напомним, что расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра, т.е. кратчайшее расстояние между точками этих прямых.

Найдем расстояние между скрещивающимися прямыми, заданными каноническими уравнениями

где — произвольные точки на прямых и соответственно.

Искомое расстояние равно высоте параллелепипеда, построенного на векторах (рис.4.36), т.е.

(4.38)

где

— смешанное и векторное произведения векторов. Как показано выше, прямые и скрещивающиеся тогда и только тогда, когда векторы некомпланарные, т.е.

Отсюда следует, что вторая и третья строки не пропорциональны. Поэтому векторы неколлинеарные, т.е. и знаменатель в правой части (4.38) отличен от нуля.

Угол между прямыми

Угол между прямыми определяется как угол между их направляющими векторами. Поэтому величина острого угла между прямыми

вычисляется по формуле

(4.39)

Пример 4.16. Найти расстояние между прямой, проходящей через точки , и осью абсцисс. Найти величину острого угла между этими прямыми.

Решение. Каноническое уравнение оси абсцисс имеет вид так как ось проходит через точку а — ее направляющий вектор. Каноническое уравнение прямой получено в примере 4.15,”а”:

Полагая по формуле (4.38) получаем:

Острый угол находим по формуле (4.39):

Взаимное расположение прямой и плоскости

Возможны три случая взаимного расположения прямой и плоскости:

– прямая и плоскость пересекаются, т.е. имеют одну общую точку;

– прямая и плоскость параллельны, т.е. не имеют общих точек;

– прямая лежит в плоскости, т.е. все точки прямой принадлежат плоскости.

Получим признаки для всех этих случаев. Пусть прямая и плоскость заданы уравнениями:

т.е. прямая проходит через точку коллинеарно вектору а плоскость перпендикулярна вектору

Перечисленным выше случаям взаимного расположения прямой и плоскости соответствуют следующие признаки:

– прямая и плоскость пересекаются векторы и не ортогональны (рис.4.37,а);

– прямая и плоскость параллельны векторы и ортогональны, а точка не принадлежит плоскости (рис.4.37,б);

– прямая лежит в плоскости векторы и ортогональны, а точка принадлежит плоскости (рис.4.37,в).

Учитывая свойство скалярного произведения векторов получаем:

– прямая и плоскость пересекаются ;

– прямая и плоскость параллельны

– прямая лежит в плоскости

Угол между прямой и плоскостью

Угол между прямой и плоскостью определяется как угол между прямой и ее ортогональной проекцией на плоскость (рис.4.38). Из двух смежных углов и , как правило, выбирают меньший. Если прямая перпендикулярна плоскости (ее ортогональная проекция на плоскость является точкой), то угол считается равным . Если обозначить и углы, образованные наклонной с перпендикуляром к плоскости, то

Поскольку угол (или ) равен углу между направляющим вектором прямой и нормалью к плоскости , то . Записывая скалярное произведение через координаты множителей, получаем формулу вычисления угла между прямой и плоскостью:

(4.40)

Отсюда, например, следует полученное ранее необходимое условие параллельности прямой и плоскости.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Источник: http://MathHelpPlanet.com/static.php?p=vzaimnoe-raspolozhenie-pryamyh-v-prostranstve

Геометрия для 10 класса

Прямые на плоскости и в пространстве - теоремы, правила

1.1 Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

1.2 Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.

 1.3 Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

2. Некоторые следствия из аксиом

2.1 Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

2.2 Через две пересекающиеся прямые проходит плоскость, и притом только  одна.

3. Параллельность прямых, прямой и плоскости

3.1 Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

3.2 Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

3.3 Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

3.4 Если две прямые параллельны третьей прямой, то они параллельны.

3.5 Прямая и плоскость называются параллельными, если они не имеют общих точек.

3.6 Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.

4. Взаимное расположение прямых в пространстве. Угол между двумя прямыми

4.1 Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости.

4.2 Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся

4.3 Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой, и притом только одна.

4.4 Если стороны двух углов соответственно сонаправлены, то такие углы равны.

5. Параллельность плоскостей

5.1 Две плоскости называются параллельными, если они не пересекаются.

5.2 Если две пересекающиеся прямые одной        плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

6. Перпендикулярность прямой и плоскости

6.1 Если одна из двух параллелельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

6.2 Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

6.3 Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

6.4 Если две прямые перпендикулярны к плоскости, то они параллельны.

6.5 Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

6.6 Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

7. Перпендикуляр и наклонные. Угол между прямой и плоскостью

7.1 Прямая, проведённая в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной.

7.2 Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и её проекции на плоскость.

8. Двугранный угол. Перпендикулярность плоскостей

8.1 Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости.

8.2 Две пересекающиеся плоскости называются перпендикулярными, если угол между ними равен 900.

8.3 Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

8.4 Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов его трёх измерений.

8.5 Сумма плоских углов многогранного угла меньше 3600.

9. Теорема Эйлера

В любом выпуклом многограннике сумма числа граней и вершин больше числа рёбер на 2.

10. Призма

10.1 Площадь боковой поверхности призмы равна произведению периметра основания на высоту призмы.

11. Пространственная теорема Пифагора

Если все плоские углы при одной из вершин тетраэдра – прямые, то квадрат площади грани, противолежащей этой вершине, равен сумме квадратов площади остальных граней.

12. Пирамида

12.1 Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

12.2 Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему.

13. Вектор

13.1 Отрезок, для которого указано, какой из его концов считается началом, а какой – концом, называется вектором.

13.2 Для любых трёх точек A, B и C имеет место равенство

13.3

13.4

13.5 Произведением ненулевого вектора на число k называется такой вектор длина которого равна причём векторы и сонаправлены при k>0 и противоположно направлены при k

Источник: https://inetshpora.wordpress.com/matematika/geometriya-dlya-10-klassa/

10 класс. Геометрия. Параллельные прямые в пространстве. – Параллельные прямые в пространстве. Параллельность трех прямых

Прямые на плоскости и в пространстве - теоремы, правила

Мы уже изучали параллельные прямые в планиметрии. Теперь нужно дать определение параллельных прямых в пространстве и доказать соответствующие теоремы.

2. Определение параллельных прямых в пространстве

Определение: Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются (Рис. 1.).

Обозначение параллельных прямых: a || b.

Рис. 1.

3. Теорема 1 и ее доказательство

Теорема 1.

Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

Дано: прямая а,  (Рис. 2.)

Доказать: существует единственная прямая b || a, 

Рис. 2.

Доказательство:

Через прямую а и точку  , не лежащую на ней, можно провести единственную плоскость α (Рис. 3.). В плоскости α  можно провести единственную прямую b, параллельную а, проходящую через точку M (из аксиомы планиметрии о параллельных прямых). Существование такой прямой доказано.

Рис. 3.

Докажем единственность такой прямой. Предположим, что существует другая прямая с, проходящая через точку M и параллельная прямой а. Пусть параллельные прямые а и с лежат в плоскости β. Тогда плоскость β  проходит через точку M и прямую а.

Но через точку M и прямую а проходит единственная плоскость (в силу теоремы 2). Значит, плоскости β и α совпадают.

Из аксиомы параллельных прямых, следует, что прямые b и с совпадают, так как в плоскости существует единственная прямая, проходящая через данную точку и параллельная заданной прямой. Единственность доказана.

4. Лемма (о двух параллельных прямых, пересекающих плоскость) и ее доказательство

Лемма

Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

Дано:  а || b, 

Доказать: 

Рис. 4.

Доказательство: (Рис. 4.)

Существует некоторая плоскость β, в которой лежат параллельные прямые а и b. Точка М принадлежит и плоскости α, и прямой а, которая лежит в плоскости β. Значит, М – общая точка плоскостей α и β. А по третьей аксиоме, существует прямая MN, по которой пересекаются эти две плоскости.

Прямая MN пересекается с прямой b.(так как в противном случае, получается, что прямые MN и b параллельные, то есть a = MN, что невозможно, так как прямая а пересекается с плоскостью α в точке М по условию). То есть точка N – это точка пересечения прямой b и плоскости  α..

          Докажем, что N  – это единственная общая точка прямой b и плоскости α. Допустим, что есть другая точка, но тогда прямая bпринадлежит плоскости α (по второй аксиоме). То есть MN = b, что невозможно, так как прямые а и bпараллельны, а прямая а должна пересекаться с прямой MN. Лемма доказана.

5. Теорема 2 и ее доказательство

Теорема 2.

Если две прямые параллельны третьей, то они параллельны.

Дано: 

 Доказать: .

Рис. 5.

Доказательство: (Рис. 5.)

Выберем произвольную точку К на прямой b. Тогда существует единственная плоскость α, проходящая черезточку К и прямую а. Докажем, что прямая bлежит в плоскости α.

Предположим противное. Пусть прямая bне лежит в плоскости α. Тогда прямая bпересекает плоскость α в точке К. Так как прямые bи с параллельны, то, согласно лемме, прямая с также пересекает плоскость α.

Прямые а и с также параллельны, значит, по лемме, прямая а также пересекает плоскость α, но это невозможно, так как прямая а лежит в плоскости α. Получили противоречие.

То есть, предположение было неверным, а значит, прямая bлежит в плоскости α.

Докажем, что прямые а и b не пересекаются. Предположим противное. Пусть прямые а и bпересекаются в некоторой точке М. Но тогда получается, что через точку М проходят две прямые а и b, параллельные прямой с, что невозможно в силу теоремы 1. Получили противоречие. Значит, прямые а и b не пересекаются.

Мы доказали, что прямые а и b не пересекаются и что существует плоскость α, в которой лежат прямые а и b. Значит, прямые а и bпараллельны (по определению), что и требовалось доказать.

6. Итоги урока

Итак, мы дали определение параллельных прямых и доказали теорему о параллельных прямых в пространстве. Также мы доказали важную лемму о пересечении параллельными прямыми плоскости и с помощью этой леммы доказали теорему: если две прямые параллельны третьей, то они параллельны. Эта теория будет использоваться дальше и для доказательства других теорем, и для решения задач.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/10-klass/parallelnost-pryamyh-i-ploskostej/parallelnye-pryamye-v-prostranstve-parallelnost-treh-pryamyh?seconds=0&chapter_id=210

http://www..com/watch?v=vLnuR_HVROY

http://verninfo.narod.ru/p2aa1.html

http://easyen.ru/load/math/10_klass/parallelnye_prjamye_v_prostranstve/41-1-0-8381

http://doc4web.ru/geometriya/teoreticheskie-samostoyatelnie-raboti-po-geometrii-klass.html

Источник: https://www.kursoteka.ru/course/2156/lesson

Геометрия_10-1

Прямые на плоскости и в пространстве - теоремы, правила

Материалы к зачетной работе по теме
“Основные понятия Рё аксиомы стереометрии.
Параллельность прямых Рё плоскостей”

Стереометрия — это раздел геометрии, в котором изучаются свойства фигур в пространстве.

Слово «стереометрия» РїСЂРѕРёСЃС…РѕРґРёС‚ РѕС‚ греческих слов В«στερεοσВ» — объемный, пространственный Рё В«μετρεοВ» — измерять.

Простейшие фигуры в пространстве: точка, прямая, плоскость.

Плоскость. Представление о плоскости дает гладкая поверхность стола или стены. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны.
РќР° рисунках плоскости изображаются РІ РІРёРґРµ параллелограмма или РІ РІРёРґРµ произвольной области Рё обозначаются греческими буквами α, β, γ Рё С‚.Рґ. Точки Рђ Рё Р’ лежат РІ плоскости β (плоскость β РїСЂРѕС…РѕРґРёС‚ через эти точки), Р° точки M, N, P РЅРµ лежат РІ этой плоскости. Коротко это записывают так: Рђ ∈ β, B ∈ β,

Аксиомы стереометрии и их следствия

Аксиома 1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Аксиома 2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. (Прямая лежит на плоскости или плоскость проходит через прямую).
�з аксиомы 2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют одну общую точку, то говорят, что они пересекаются.
Аксиома 3. Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.В таком случае говорят, плоскости пересекаются по прямой.Пример: пересечение двух смежных стен, стены и потолка комнаты.

Некоторые следствия из аксиом

Теорема 1. Через прямую a и не лежащую на ней точку А проходит плоскость, и притом только одна.
Теорема 2. Через две пересекающиеся прямые a и b проходит плоскость, и при том только одна.

Параллельные прямые в пространстве

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Теорема о параллельных прямых.Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.
Лемма о пересечении плоскости параллельными прямыми.Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
Теорема Рѕ трех прямых РІ пространстве.Если РґРІРµ прямые параллельны третьей РїСЂСЏРјРѕР№, то РѕРЅРё параллельны (если a∥c Рё b∥c, то a∥b).

Параллельность прямой и плоскости

Прямая и плоскость называются параллельными, если они не имеют общих точек.

Признак параллельности прямой и плоскости Теорема. Если прямая, не лежащая в данной плоскости, параллельнакакой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Теорема. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.Теорема.Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.

Взаимное расположение прямых в пространстве

Пересекающиеся прямые: лежат в одной плоскости, имеют одну общую точку.Параллельные прямые: лежат в одной плоскости, не имеют общих точек (не пересекаются)Скрещивающиеся прямые: не лежат в одной плоскости, не имеют общих точек (не пересекаются)
Параллельность плоскостей Две плоскости называются параллельными, если РѕРЅРё РЅРµ пересекаются, С‚.Рµ. РЅРµ имеют РЅРё РѕРґРЅРѕР№ общей точки. α∥β.

Признак параллельности РґРІСѓС… плоскостейТеорема. Если РґРІРµ пересекающиеся прямые РѕРґРЅРѕР№ плоскости параллельны РґРІСѓРј пересекающимся прямым РґСЂСѓРіРѕР№ плоскости , то эти плоскости параллельны.Если Р°∥Р°1 Рё b∥b1, то α∥β.

Свойства параллельных плоскостей

Вели α∥β Рё РѕРЅРё пересекаются СЃ γ, то Р°∥b.Если РґРІРµ параллельные плоскости пересечены третьей, то линии РёС… пересечения параллельны.Если α∥β Рё AB∥CD, то РђР’ = CD. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

вернуться РЅР° страницу “Математика”вверх

Источник: http://osiktakan.ru/mg_10-0.htm

Прямая в пространстве – необходимые сведения

Прямые на плоскости и в пространстве - теоремы, правила

Статья рассказывает о взаимном расположении линий в пространстве. Будут рассмотрены основные способы задания прямой с приведением примеров и наглядных рисунков.

Yandex.RTB R-A-339285-1

Раздел о прямой на плоскости дает представление о течки и прямой. Расположение прямой в пространстве аналогично. Если мысленно отметить две точки и провести линию, соединив их, получим прямую, уходящую в бесконечность.

Точки, прямые и отрезки в пространстве обозначаются аналогично расположению в плоскости.

Если прямая располагается на плоскости в пространстве, тогда это можно подкрепить аксиомами:

Определение 1

  • через две точки можно провести единственную прямую;
  • если две точки прямой лежат в плоскости, то все остальные точки, расположенные на прямой принадлежат плоскости.

Имеет место аксиома, благодаря которой можно рассматривать прямую в пространстве в качестве двух пересеченных плоскостей:

Определение 2

Если две плоскости имеют общую точку, тогда имеют общую прямую, на которой лежат все общие точки этих плоскостей. Показано на рисунке, приведенном ниже.

Взаимное расположение прямых в пространстве

Прямые в пространстве могут совпадать, в таком случае они будут иметь большое количество общих точек или хотя бы 2.

Определение 3

Две прямые, расположенные в пространстве, могут пересекаться в случае наличия одной общей точки.

Данный случай говорит о том, что прямые располагаются на плоскости трехмерного пространства. Когда прямые, расположенные в пространстве, пересекаются, то переходим к определению угла между пересекающимися прямыми.

Определение 4

Две прямые пространства параллельны в том случае, если расположены в одной плоскости без общих точек.

Рассмотрим ниже расположение параллельных прямых.

После рассмотрения определения параллельных прямых, расположенных в пространстве, необходимо добавить о направляющих векторах прямой.

Определение 5

Ненулевой вектор, который располагается на прямой или на параллельной ему прямой, называют направляющим вектором данной прямой.

Если по условию дана линия в пространстве, то он используется для решения задач.

Две прямые пространства могут быть скрещивающимися.

Определение 6

Две прямые называют скрещивающимися, при условии, что они лежат в одной плоскости.

Это тесно связано с определением угла между скрещивающимися прямыми.

Особым случаем считается пересечение или скрещивание прямых под прямым углом в пространстве. Их называют перпендикулярными. Рассмотрим на рисунке.

Способы задания прямой в пространстве

Для того, чтобы расположить прямую в пространстве, существует несколько методов.

Из аксиомы для двух точек плоскости имеем, что через них может быть задана единственная прямая. При расположении двух точек в пространстве также задается только одна прямая, проходящая через них.

При прямоугольной системе координат прямая задается с помощью координат точек, которые располагаются в трехмерном пространстве. Это и позволяет составить уравнение прямой, проходящей через две заданные точки.

Еще один способ задания прямой – это теорема. Через любую точку пространства, не лежащую на данной прямой, может проходить прямая, параллельная данной, причем только одна.

Отсюда следует, что при задавании прямой и точки, не лежащей на ней, сможем определить прямую, которая параллельна заданной и проходит через указанную точку.

Есть способ, когда можно указать точку, направляющий вектор и прямую, которая проходит через нее. При задании прямой относительно прямоугольной систему координат, можно говорить о канонических и параметрических уравнениях прямой в пространстве.

Немаловажный способ задания прямой – это способ, основанный на аксиоме: если две плоскости имеют общую точку, тогда имеют общую прямую, где располагаются общие точки заданных плоскостей. При задании двух пересекающихся плоскостей можно определить прямую пространства.

Если задана плоскость и нележащая в ней точка, тогда существует прямая, проходящая через нее и перпендикулярная заданной плоскости, причем только одна. Этот способ задания базируется на теореме. Получаем, что для определения прямой достаточно задать плоскость, перпендикулярную ей, с точкой, через которую проходит заданная прямая.

В случае, если прямая задается относительно введенной прямоугольной системы координат, то следует укрепить знания из статьиуравнения прямой, проходящей через заданную точку перпендикулярно в заданной плоскости.Рассмотрим задание прямой, используя точку, через которую она пройдет, и плоскости, которая располагается перпендикулярно относительно заданной прямой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/prjamaja-ploskost/prjamaja-v-prostranstve-neobhodimye-svedenija/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.