Находим сторону треугольника, если две другие известны тремя способами, формулы
Как найти угол у треугольника в строительстве. Находим сторону треугольника, если две другие известны тремя способами, формулы
В жизни нам часто придется сталкиваться с математическими задачами: в школе, в университете, а затем помогая своему ребенку с выполнением домашнего задания. Люди определенных профессий будут сталкиваться с математикой ежедневно. Поэтому полезно запоминать или вспоминать математические правила. В этой статье мы разберем одно из них: нахождение катета прямоугольного треугольника.
Что такое прямоугольный треугольник
Для начала вспомним, что такое прямоугольный треугольник. Прямоугольный треугольник – это геометрическая фигура из трех отрезков, которые соединяют точки, не лежащие на одной прямой, и один из углов этой фигуры равен 90 градусам. Стороны, образующие прямой угол, называются катетами, а сторона, которая лежит напротив прямого угла – гипотенузой.
Находим катет прямоугольного треугольника
Существует несколько способов, позволяющих узнать длину катета. Хотелось бы рассмотреть бы их подробнее.
Теорема Пифагора, чтобы найти катет прямоугольного треугольника
Если нам известны гипотенуза и катет, то мы можем найти длину неизвестного катета по теореме Пифагора. Звучит она так: “Квадрат гипотенузы равен сумме квадратов катетов”. Формула: c²=a²+b², где c – гипотенуза, a и b – катеты. Преобразовываем формулу и получаем: a²=c²-b².
Пример. Гипотенуза равна 5 см, а катет – 3 см. Преобразовываем формулу: c²=a²+b² → a²=c²-b². Далее решаем: a²=5²-3²; a²=25-9; a²=16; a=√16; a=4 (см).
Тригонометрические соотношения, чтобы найти катет прямоугольного треугольника
Также можно найти неизвестный катет, если известны любая другая сторона и любой острый угол прямоугольного треугольника. Есть четыре варианта нахождения катета при помощи тригонометрических функций: по синусу, косинусу, тангенсу, котангенсу. Для решения задач нам поможет таблица, которая находится чуть ниже. Рассмотрим эти варианты.
Найти катет прямоугольного треугольника при помощи синуса
Синус угла (sin) – это отношение противолежащего катета к гипотенузе. Формула: sin=a/c, где а – катет, лежащий против данного угла, а с – гипотенуза. Далее преобразуем формулу и получаем: a=sin*c.
Пример. Гипотенуза равна 10 см, угол А равен 30 градусов. По таблице вычисляем синус угла А, он равен 1/2. Затем по преобразованной формуле решаем: a=sin∠А*c; a=1/2*10; a=5 (см).
Найти катет прямоугольного треугольника при помощи косинуса
Косинус угла (cos) – это отношение прилежащего катета к гипотенузе. Формула: cos=b/c, где b – катет, прилежащий к данному углу, а с – гипотенуза. Преобразуем формулу и получим: b=cos*c.
Пример. Угол А равен 60 градусов, гипотенуза равна 10 см. По таблице вычисляем косинус угла А, он равен 1/2. Далее решаем: b=cos∠A*c; b=1/2*10, b=5 (см).
Найти катет прямоугольного треугольника при помощи тангенса
Тангенс угла (tg) – это отношение противолежащего катета к прилежащему. Формула: tg=a/b, где а – противолежащий к углу катет, а b – прилежащий. Преобразуем формулу и получаем: a=tg*b.
Пример. Угол А равен 45 градусов, гипотенуза равна 10 см. По таблице вычисляем тангенс угла А, он равен Решаем: a=tg∠A*b; a=1*10; a=10 (см).
Найти катет прямоугольного треугольника при помощи котангенса
Котангенс угла (ctg) – это отношение прилежащего катета к противолежащему. Формула: ctg=b/a, где b – прилежащий к углу катет, а – противолежащий. Иначе говоря, котангенс – это “перевернутый тангенс”. Получаем: b=ctg*a.
Пример. Угол А равен 30 градусов, противолежащий катет равен 5 см. По таблице тангенс угла А равен √3. Вычисляем: b=ctg∠A*a; b=√3*5; b=5√3 (см).
Итак, теперь вы знаете, как находить катет в прямоугольном треугольнике. Как видите, это не так уж и сложно, главное – запомнить формулы.
//www.youtube.com/watch?v=7uIBZPkUdeI
В геометрии часто бывают задачи, связанные со сторонами треугольников. Например, часто необходимо найти сторону треугольника, если две другие известны.
Треугольники бывают равнобедренными, равносторонними и неравносторонними. Из всего разнообразия, для первого примера выберем прямоугольный (в таком треугольнике один из углов равен 90°, прилегающие к нему стороны называются катетами, а третья — гипотенузой).
Быстрая навигация по статье
Длина сторон прямоугольного треугольника
Решение задачи следует из теоремы великого математика Пифагора. В ней говорится, что сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы: a²+b²=c²
- Находим квадрат длины катета a;
- Находим квадрат катета b;
- Складываем их между собой;
- Из полученного результата извлекаем корень второй степени.
Пример: a=4, b=3, c=?
- a²=4²=16;
- b² =3²=9;
- 16+9=25;
- √25=5. То есть, длина гипотенузы данного треугольника равна 5.
Если же у треугольника нет прямого угла, то длин двух сторон недостаточно. Для этого необходим третий параметр: это может быть угол, высота площадь треугольника, радиус вписанной в него окружности и т.д..
Если известен периметр
В этом случае задача ещё проще. Периметр (P) представляет собой сумму всех сторон треугольника: P=a+b+c. Таким образом, решив простое математическое уравнение получаем результат.
Пример: P=18, a=7, b=6, c=?
1) Решаем уравнение, перенося все известные параметры в одну сторону от знака равенства:
2) Подставляем вместо них значения и вычисляем третью сторону:
c=18-7-6=5, итого: третья сторона треугольника равна 5.
Если известен угол
Для вычисления третьей стороны треугольника по углу и двум другим сторонам, решение сводится к вычислению тригонометрического уравнения.
Зная взаимосвязь сторон треугольника и синуса угла, несложно вычислить третью сторону. Для этого нужно возвести обе стороны в квадрат и сложить их результаты вместе.
Затем вычесть из получившегося произведение сторон, умноженное на косинус угла: C=√(a²+b²-a*b*cosα)
Если известна площадь
В этом случае одной формулой не обойтись.
1) Сначала вычисляем sin γ, выразив его из формулы площади треугольника:
sin γ= 2S/(a*b)
2) По следующей формуле вычисляем косинус того же угла:
sin² α + cos² α=1
cos α=√(1 — sin² α)=√(1- (2S/(a*b))²)
3) И снова воспользуемся теоремой синусов:
C=√((a²+b²)-a*b*cosα)
C=√((a²+b²)-a*b*√(1- (S/(a*b))²))
Подставив в это уравнение значения переменных, получим ответ задачи.
Треугольник – это примитивный многоугольник, ограниченный на плоскости тремя точками и тремя отрезками попарно соединяющими эти точки. Углы в треугольнике бывают острыми, тупыми и прямыми. Сумма углов в треугольнике величина непрерывная и равна 180 градусам.
Вам понадобится
- Базовые познания в геометрии и тригонометрии.
Инструкция
1. Обозначим длины сторон треугольника a=2, b=3, c=4, а его углы u, v, w, всякий из которых лежит наоборот одной сторон.
По теореме косинусов квадрат длины стороны треугольника равен сумме квадратов длин 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними. То есть a2 = b2 + c2 – 2bc*cos(u).
Подставим в это выражение длины сторон и получим: 4 = 9 + 16 – 24cos(u).
2. Выразим из полученного равенства cos(u). Получим следующее: cos(u) = 7/8. Дальше найдём собственно угол u. Для этого посчитаем arccos(7/8). То есть угол u = arccos(7/8).
3. Аналогичным образом, выражая другие стороны через остальные, найдём оставшиеся углы.
Обратите внимание!
Значение одного угла не может превышать 180 градусов. Под знаком arccos() не может стоять число огромнее 1 и поменьше -1.
Полезный совет
Для того, дабы обнаружить все три угла необязательно выражать все три стороны, дозволено обнаружить только 2 угла, а 3-й получить путём вычитания из 180 градусов значения остальных 2-х. Это вытекает из того, что сумма всех углов треугольника величина непрерывная и равна 180 градусам.
Вписанной в него окружности (r). Для этого увеличьте ее в шесть раз и разделите на квадратный корень из тройки: А = r*6/√3.
Зная радиус (R), тоже можно вычислить длину стороны (А) правильного треугольника. Этот радиус вдвое больше использованного в предыдущей формуле, поэтому утройте его и тоже поделите на квадратный корень из тройки: А = R*3/√3.
По (Р) равностороннего треугольника вычислить длину его стороны (А) еще проще, так как длины сторон в этой фигуре одинаковы. Просто разделите периметр натрое: А = Р/3.В равнобедренном треугольнике вычисление длины стороны по известному периметру немного сложнее – нужно знать еще и длину хотя бы одной из сторон.
Если известна длина стороны А, лежащей в основании фигуры, длину любой из боковых (В) находите пополам разности между периметром (Р) и размером основания: В = (Р-А)/2.
А если известна боковая сторона, то длину основания определяйте вычитанием из периметра удвоенной длины боковой: А = Р-2*В.
Знания площади (S), занимаемой на плоскости правильным треугольником, тоже достаточно для нахождения длины его стороны (А). Извлеките квадратный корень из соотношения площади и корня из тройки, а полученный результат удвойте: А = 2*√(S/√3).
В , в от любого другого, для вычисления длины одной из сторон достаточно знать длины двух других. Если искомая сторона – (С), для этого находите квадратный корень длин известных сторон (А и В), возведенных в квадрат: С = √(А²+В²). А если вычислить требуется длину одного из катетов, то квадратный корень следует извлекать из длин гипотенузы и другого катета: А = √(С²-В²).
Источники:
- как вычислить сторону равностороннего треугольника
В общем случае, т.е. когда нет данных о том, является ли треугольник равносторонним, равнобедренным, прямоугольным, приходится использовать тригонометрические функции для вычисления длин его сторон. Правила их применения определяются теоремами, которые так и названы – теорема синусов, косинусов и тангенсов.
Инструкция
Один из способов вычисления длин сторон произвольного треугольника предполагает теоремы синусов. Согласно ей соотношения длин сторон противолежащих им углов треугольника равны.
Это позволяет вывести формулу длины стороны для тех случаев, из условий задачи известна хотя бы одна сторона и два угла в вершинах фигуры.
[attention type=yellow][/attention]
Если ни один из этих двух углов (α и β) не лежит между известной стороной А и вычисляемой В, то умножьте длину известной стороны на синус прилегающего к ней известного угла β и разделите на синус другого известного угла а: В = А*sin(β)/sin(α).
Если один (γ) из двух (α и γ) известных углов образован , длина одной из которых (А) дана в , а вторую (В) требуется вычислить, то примените ту же теорему.
Решение можно свести к формуле, полученной в предыдущем шаге, если вспомнить еще и теорему о сумме углов в треугольнике – эта величина всегда 180°.
В формуле неизвестен угол β, который по этой теореме можно вычислить, если отнять от 180° величины двух известных углов. Подставьте это значение в равенство, и вы получите формулу В = А*sin(180°-α-γ)/sin(α).
В геометрии углом называется фигура, образованная двумя лучами, выходящими из одной точки (вершины угла). Чаще всего углы измеряют в градусах, при этом полный угол, или оборот, равен 360 градусам. Вы можете вычислить угол многоугольника, если вам известен тип многоугольника и величина других его углов или, в случае прямоугольного треугольника, длина двух из его сторон.
Вычисление углов многоугольника
- Сумма углов треугольника (трехстороннего многоугольника) составляет 180 градусов.
- Сумма углов четырехугольника (четырехстороннего многоугольника) составляет 360 градусов.
- Сумма углов пятиугольника (пятистороннего многоугольника) составляет 540 градусов.
- Сумма углов шестиугольника (шестистороннего многоугольника) составляет 720 градусов.
- Сумма углов восьмиугольника (восьмистороннего многоугольника) составляет 1080 градусов.
Определите, является ли многоугольник правильным. Правильным называется такой многоугольник, у которого все стороны и все углы между собой равны.
Примерами правильных многоугольников могут служить равносторонний треугольник и квадрат, в то время как здание Пентагона в Вашингтоне построено в форме правильного пятиугольника, а дорожный знак «стоп» имеет форму правильного восьмиугольника.
Сложите известные величины углов многоугольника, а затем вычтите эту сумму из общей суммы всех его углов. В большинстве геометрических задач такого рода речь идет о треугольниках или четырехугольниках, поскольку в них нужно меньше исходных данных, так что мы поступим аналогично.
- Если два угла треугольника равны, соответственно, 60 градусам и 80 градусам, сложите эти числа. Получится 140 градусов. Затем вычтите эту сумму из общей суммы всех углов треугольника, то есть из 180 градусов: 180 – 140 = 40 градусов. (Треугольник, все углы которого неравны между собой, называется неравносторонним.)
- Вы можете записать это решение в виде формулы a = 180 – (b + c), где а – угол, величину которого нужно найти, b и c – величины известных углов. Для многоугольников с числом сторон больше трех замените 180 на сумму углов многоугольника данного вида и добавьте по одному слагаемому к сумме в скобках для каждого известного угла.
- В некоторых многоугольниках есть свои «хитрости», которые помогут вам вычислить неизвестный угол. Например, равнобедренный треугольник – это треугольник с двумя равными сторонами и двумя равными углами. Параллелограмм – это четырехугольник, противоположные стороны и противоположные углы которого равны.
Вычисление углов прямоугольного треугольника
Определите, какие данные вам известны. Прямоугольный треугольник называется так потому, что один из его углов является прямым. Вы можете найти величину одного из двух оставшихся углов, если вам известна одна из следующих величин:
Определите, какую тригонометрическую функцию нужно использовать. Тригонометрические функции выражают соотношения двух из трех сторон треугольника. Существует шесть тригонометрических функций, но чаще всего используются следующие:
Сосчитайте количество углов в многоугольнике.
Найдите сумму всех углов многоугольника. Формула для нахождения суммы всех внутренних углов многоугольника выглядит как (n – 2) x 180, где n – число сторон, а также углов многоугольника. Вот суммы углов некоторых часто встречающихся многоугольников:
Источник: //kamrtn.ru/kak-naiti-ugol-u-treugolnika-v-stroitelstve-nahodim-storonu.html
Как найти третью сторону треугольника если известны 2 | Помощь школьнику
Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен \(2\sqrt3\), а образующая равна 5.
Находим сторону треугольника, если две другие известны тремя способами, формулы
В геометрии часто бывают задачи, связанные со сторонами треугольников. Например, часто необходимо найти сторону треугольника, если две другие известны.Треугольники бывают равнобедренными, равносторонними и неравносторонними. Из всего разнообразия, для первого примера выберем прямоугольный (в таком треугольнике один из углов равен 90°, прилегающие к нему стороны называются катетами, а третья — гипотенузой).
Быстрая навигация по статье
Длина сторон прямоугольного треугольника
Решение задачи следует из теоремы великого математика Пифагора. В ней говорится, что сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы: a²+b²=c²
- Находим квадрат длины катета a; Находим квадрат катета b; Складываем их между собой; Из полученного результата извлекаем корень второй степени.
Если же у треугольника нет прямого угла, то длин двух сторон недостаточно. Для этого необходим третий параметр: это может быть угол, высота площадь треугольника, радиус вписанной в него окружности и т. д..
Если известен периметр
В этом случае задача ещё проще. Периметр (P) представляет собой сумму всех сторон треугольника: P=a+b+c. Таким образом, решив простое математическое уравнение получаем результат.
Пример: P=18, a=7, b=6, c=?
1) Решаем уравнение, перенося все известные параметры в одну сторону от знака равенства:
2) Подставляем вместо них значения и вычисляем третью сторону:
C=18-7-6=5, итого: третья сторона треугольника равна 5.
Если известен угол
Для вычисления третьей стороны треугольника по углу и двум другим сторонам, решение сводится к вычислению тригонометрического уравнения.
Зная взаимосвязь сторон треугольника и синуса угла, несложно вычислить третью сторону. Для этого нужно возвести обе стороны в квадрат и сложить их результаты вместе.
Затем вычесть из получившегося произведение сторон, умноженное на косинус угла: C=√(a²+b²-a*b*cosα)
Если известна площадь
В этом случае одной формулой не обойтись.
1) Сначала вычисляем sin γ, выразив его из формулы площади треугольника:
2) По следующей формуле вычисляем косинус того же угла:
3) И снова воспользуемся теоремой синусов:
Подставив в это уравнение значения переменных, получим ответ задачи.
Сайт не хранит личную информацию граждан Российской Федерации (регистрация закрыта, комментарии отключены).
Некоторые опубликованные на сайте материалы могут содержать информацию, предназначеную для пользователей старше 16 лет (согласно №436-ФЗ от 29.12.
2010 года «О защите детей от информации причиняющей вред их здоровью и развитию»). 16+. Использование данного сайта подразумевает принятие условий пользовательского соглашения.
© Google Inc., 2016. Все права защищены. Наименование Google и логотип Google являются товарными знаками компании Google Inc.
GoogleTM, Android™, Google Maps™, Google Play™, Google Docs™, Google Picasa™, Gmail™, Google Chrome™, Google Plus™, ™ и соответствующие логотипы являются товарными знаками Google, Inc. в США и других странах.Microsoft®, Windows®, Windows XP®, Windows Vista®, Xbox®, Zune®, SharePoint®, Internet Explorer®, Hotmail®, Bing®, Office®, Word®, PowerPoint®, Excel®, Outlook® и их логотипы являются товарными знаками Microsoft Corporation в США и других странах.
Mozilla®, Mozilla Firefox® и их логотипы являются товарными знаками Mozilla Foundation в США и других странах.
Skype® и соответствующий логотип являются товарными знаками Skype в США и других странах.
Как найти длину третьей стороны треугольника?
Задачами по решению треугольников (именно так называются подобные задачи) занимается особый раздел геометрии – тригонометрия.
По длине двух сторон треугольника
Найти длину третьей стороны треугольника прямоугольного предложил известный всем древнейший математик Пифагор. За основу берется прямоугольный треугольник, то есть такой, в котором один из углов равен 90 градусам.
Прилегающие стороны к данному углу всегда обозначаются как катеты, соответственно, третья, самая большая сторона, получила название “гипотенуза”.
Теорема Пифагора звучит следующим образом: «квадрат длины гипотенузы равняется сумме квадратов длин катетов».
Для решения такой задачи, значение длины одного катета обозначаем как Х (икс), а другого – Y (игрек), длину гипотенузы можно обозначить как Z (зет).
Теперь запишем формулу вычисления длины гипотенузы: Z в квадрате= X в квадрате+Y в квадрате. Исходя из такой формулы, в итоге получаем значение квадрата длины гипотенузы.
Значит, для получения значения длины гипотенузы нужно еще извлекать квадратный корень из полученной суммы длин катетов.
Ранее мы рассмотрели идеальный вариант, когда нужно определить длину гипотенузы. Если же в задаче неизвестна длина одного из катетов, то, опираясь на указанную теорему, можно вывести производную формулу.
Квадрат длины одного из катетов равен значению, полученному при вычитании квадрата длины другого катета из квадрата длины гипотенузы: Х в квадрате = Z в квадрате — Y в квадрате.Ну и последним действием идет обязательно извлечение квадратного корня из полученного значения.
Для примера возьмем простые значения длины катетов: 2 и 3 сантиметра. Путем простых математических операций получаем Z в квадрате = 4 + 9 = 13. Значит, Z примерно равен 3,6 сантиметрам. Если же исключить возведение значений в квадрат, то получится, что Z=2+3=5 сантиметров, что не соответствует истине.
По длине двух сторон и по значению угла между ними
Найти длину третьей стороны треугольника можно, воспользовавшись теоремой косинусов. Данная геометрическая теорема звучит следующим образом: квадрат одной из сторон треугольника равен значению, получаемому при вычитании удвоенного произведения длины известных сторон и косинуса угла, который расположен между ними, из суммы квадратов длины известных сторон.
В математическом виде такая формула выглядит следующим образом: Z в квадрате=X²+Y²-2*X*Y*cosC. Здесь X, Y, Z обозначают длину всех сторон треугольника, а С – значение в градусах угла, который расположен между известными сторонами.
Для примера используем треугольник, известные стороны которого равны 2 и 4 сантиметрам, а угол между ними составляет 60 градусов. Используем указанную ранее формулу и получаем: Z в квадрате =4+16-2*2*4*cos60=20-8=12. Длина неизвестной стороны составляет 3,46 сантиметра.
Совет 1: Как обнаружить сторону треугольника, если две стороны известны
Решение задачи разработано старинным математиком Пифагором. Из каждого множества треугольников предпочтем прямоугольные. В них один из углов равен 90 градусов.
Стороны, которые прилегают к этому углу, именуются катетами. А третья сторона, соединяющая катеты, именуется гипотенузой. Пускай один из катетов равен 15 сантиметров, а 2-й — 9 сантиметров.
По теореме Пифагора обнаружим длину гипотенузы.
Совет 2: Как обнаружить сторону по стороне и двум углам
Геометрическая фигура, состоящая из трёх точек, не принадлежащих одной прямой называемых вершинами, и трёх попарно соединяющих их отрезков, называемых сторонами, именуется треугольником.
Существует уйма задач на нахождение сторон и углов треугольника по ограниченному числу начальных данных, одна из таких задач – нахождение стороны треугольника по одной из его сторон и двум Углам .
Совет 3: Как обнаружить сторону треугольника
Сторона Треугольника – это прямая, ограниченная его вершинами. Каждого их у фигуры три, это число определяет число фактически всех графических колляций: угла, медианы, биссектрисы и т. д.
Дабы обнаружить СторонуТреугольника , следует наблюдательно исследовать исходные данные задачи и определить, какие из них могут стать основными либо промежуточными величинами для расчета.
Совет 4: Как обнаружить сторону квадратного треугольника
Квадратный треугольник больше верно именуется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры детально рассматриваются в математической дисциплине тригонометрии.
Вычисление угла онлайн. Находим сторону треугольника, если две другие известны тремя способами, формулы
Первые – это отрезки, которые прилегают к прямому углу, а гипотенуза является самой длинной частью фигуры и находится напротив угла в 90 о. Пифагоровым треугольником называется тот, стороны которого равны натуральным числам; их длины в таком случае имеют название «пифагорова тройка».
Египетский треугольник
Для того чтобы нынешнее поколение узнало геометрию в том виде, в котором ее преподают в школе сейчас, она развивалась несколько веков. Основополагающим моментом считается теорема Пифагора. Стороны прямоугольного известна на весь мир) составляют 3, 4, 5.
Мало кто не знаком с фразой «Пифагоровы штаны во все стороны равны». Однако на самом деле теорема звучит так: c 2 (квадрат гипотенузы) = a 2 +b 2 (сумма квадратов катетов).
Среди математиков треугольник со сторонами 3, 4, 5 (см, м и т. д.) называется “египетским”. Интересно то, что которая вписана в фигуру, равняется единице. Название возникло примерно в V столетии до н.э., когда философы Греции ездили в Египет.
При построении пирамид архитекторы и землемеры пользовались соотношением 3:4:5. Такие сооружения получались пропорциональными, приятными на вид и просторными, а также редко рушились.
Для того чтобы построить прямой угол, строители использовали веревку, на которой было завязано 12 узлов. В таком случае вероятность построения именно прямоугольного треугольника повышалась до 95%.
Признаки равенства фигур
- Острый угол в прямоугольном треугольнике и большая сторона, которые равны тем же элементам во втором треугольнике, – бесспорный признак равенства фигур. Беря во внимание сумму углов, легко доказать, что вторые острые углы также равны. Таким образом, треугольники одинаковы по второму признаку.
- При наложении двух фигур друг на друга повернем их таким образом, чтобы они, совместившись, стали одним равнобедренным треугольником. По его свойству стороны, а точнее, гипотенузы, равны, так же как и углы при основании, а значит, эти фигуры одинаковые.
По первому признаку очень просто доказать то, что треугольники действительно равны, главное, чтобы две меньшие стороны (т. е. катеты) были равными между собой.
Треугольники будут одинаковыми по II признаку, суть которого заключается в равенстве катета и острого угла.
Свойства треугольника с прямым углом
Высота, которую опустили из прямого угла, разбивает фигуру на две равные части.
Стороны прямоугольного треугольника и его медианы легко узнать по правилу: медиана, которая опущена на гипотенузу, равна ее половине. можно найти как по формуле Герона, так и по утверждению, что она равна половине произведению катетов.
В прямоугольном треугольнике действуют свойства углов в 30 о, 45 о и 60 о.
- При угле, который равен 30 о, следует помнить, что противолежащий катет будет равен 1/2 самой большой стороны.
- Если угол 45 о, значит, второй острый угол также 45 о. Это говорит о том, что треугольник равнобедренный, и его катеты одинаковы.
- Свойство угла в 60 о заключается в том, что третий угол имеет градусную меру в 30 о.
Площадь легко узнать по одной из трех формул:
- через высоту и сторону, на которую она опускается;
- по формуле Герона;
- по сторонам и углу между ними.
Стороны прямоугольного треугольника, а точнее катеты, сходятся с двумя высотами.
Для того чтобы найти третью, необходимо рассматривать образовавшийся треугольник, и тогда по теореме Пифагора вычислить необходимую длину.
Помимо этой формулы существует также соотношение удвоенной площади и длины гипотенузы. Наиболее распространенным выражением среди учеников является первое, так как требует меньше расчетов.
Теоремы, применяемые к прямоугольному треугольнику
Геометрия прямоугольного треугольника включает в себя использование таких теорем, как:
Длины сторон которого (a, b, c) известны, используйте теорему косинусов.
Она утверждает, что квадрат длины любой из сторон равен сумме квадратов длин двух других, из которой вычтено удвоенное произведение длин этих же двух сторон на косинус угла между ними.
Использовать эту теорему можно для расчета угла в любой из вершин, важно знать лишь его расположение относительно сторон. Например, чтобы найти угол α, который лежит между сторонами b и c, теорему надо записать так: a² = b² + c² – 2*b*c*cos(α).
Выразите из формулы косинус искомого угла: cos(α) = (b²+c²-a²)/(2*b*c). К обеим частям равенства примените функцию, обратную косинусу – арккосинус.
Она позволяет по значению косинуса восстановить величину угла в градусах: arccos(cos(α)) = arccos((b²+c²-a²)/(2*b*c)).
Левую часть можно упростить и вычисления угла между сторонами b и c приобретет окончательный вид: α = arccos((b²+c²-a²)/2*b*c).
При нахождении величин острых углов в прямоугольном треугольнике знание длин всех сторон не обязательно, достаточно двух из них.
Если эти две стороны – катеты (a и b), разделите длину той, которая лежит напротив искомого угла (α), на длину другой.Так вы получите значение тангенса нужного угла tg(α) = a/b, а применив к обеим частям равенства обратную функцию – арктангенс – и упростив, как и в предыдущем шаге, левую часть, выведите окончательную формулу: α = arctg(a/b).
Если известные стороны – катет (a) и гипотенуза (c), для вычисления величины угла (β), образованного этими сторонами, воспользуйтесь функцией косинус и обратной ей – арккосинус.
Косинус определяется отношением длины катета к гипотенузе, а формулу в окончательном виде можно записать так: β = arccos(a/c).
Для расчета по этим же исходным острого угла (α), лежащего напротив известного катета, используйте то же соотношение, заменив арккосинус на арксинус: α = arcsin(a/c).
Источники:
- формула треугольника при 2 сторонах
Есть несколько вариантов нахождения величин всех углов в треугольнике, если известны длины трех его сторон. Один из способов заключается в использовании двух разных формул вычисления площади треугольника. Для упрощения расчетов можно также применить теорему синусов и теорему о сумме углов треугольника.
Инструкция
Воспользуйтесь, например, двумя формулами вычисления площади треугольника, в одной из которых задействованы только три его известных стороны ( Герона), а в другой – две стороны и синус угла между ними. Используя во второй формуле разные пары сторон, вы сможете определить величины каждого из углов треугольника.
Решите задачу в общем виде. Формула Герона определяет площадь треугольника, как квадратный корень из произведения полупериметра (половины всех сторон) на разницы между полупериметром и каждой из сторон. Если заменить суммой сторон, то формулу можно записать в таком виде: S=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c).
C другой стороны площадь треугольника можно выразить как половину произведения двух его сторон на синус угла между ними. Например, для сторон a и b с углом γ между ними эту формулу можно записать так: S=a∗b∗sin(γ). Замените левую часть равенства формулой Герона: 0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c)=a∗b∗sin(γ).Выведите из этого равенства формулу для
Вписанной в него окружности (r). Для этого увеличьте ее в шесть раз и разделите на квадратный корень из тройки: А = r*6/√3.
Зная радиус (R), тоже можно вычислить длину стороны (А) правильного треугольника. Этот радиус вдвое больше использованного в предыдущей формуле, поэтому утройте его и тоже поделите на квадратный корень из тройки: А = R*3/√3.
По (Р) равностороннего треугольника вычислить длину его стороны (А) еще проще, так как длины сторон в этой фигуре одинаковы. Просто разделите периметр натрое: А = Р/3.В равнобедренном треугольнике вычисление длины стороны по известному периметру немного сложнее – нужно знать еще и длину хотя бы одной из сторон.
Если известна длина стороны А, лежащей в основании фигуры, длину любой из боковых (В) находите пополам разности между периметром (Р) и размером основания: В = (Р-А)/2.
А если известна боковая сторона, то длину основания определяйте вычитанием из периметра удвоенной длины боковой: А = Р-2*В.
Знания площади (S), занимаемой на плоскости правильным треугольником, тоже достаточно для нахождения длины его стороны (А). Извлеките квадратный корень из соотношения площади и корня из тройки, а полученный результат удвойте: А = 2*√(S/√3).
В , в от любого другого, для вычисления длины одной из сторон достаточно знать длины двух других. Если искомая сторона – (С), для этого находите квадратный корень длин известных сторон (А и В), возведенных в квадрат: С = √(А²+В²). А если вычислить требуется длину одного из катетов, то квадратный корень следует извлекать из длин гипотенузы и другого катета: А = √(С²-В²).
Источники:
- как вычислить сторону равностороннего треугольника
В общем случае, т.е. когда нет данных о том, является ли треугольник равносторонним, равнобедренным, прямоугольным, приходится использовать тригонометрические функции для вычисления длин его сторон. Правила их применения определяются теоремами, которые так и названы – теорема синусов, косинусов и тангенсов.
Инструкция
Один из способов вычисления длин сторон произвольного треугольника предполагает теоремы синусов. Согласно ей соотношения длин сторон противолежащих им углов треугольника равны.
Это позволяет вывести формулу длины стороны для тех случаев, из условий задачи известна хотя бы одна сторона и два угла в вершинах фигуры.
[attention type=yellow][/attention]
Если ни один из этих двух углов (α и β) не лежит между известной стороной А и вычисляемой В, то умножьте длину известной стороны на синус прилегающего к ней известного угла β и разделите на синус другого известного угла а: В = А*sin(β)/sin(α).
Если один (γ) из двух (α и γ) известных углов образован , длина одной из которых (А) дана в , а вторую (В) требуется вычислить, то примените ту же теорему.
Решение можно свести к формуле, полученной в предыдущем шаге, если вспомнить еще и теорему о сумме углов в треугольнике – эта величина всегда 180°.
В геометрии часто бывают задачи, связанные со сторонами треугольников. Например, часто необходимо найти сторону треугольника, если две другие известны.В формуле неизвестен угол β, который по этой теореме можно вычислить, если отнять от 180° величины двух известных углов. Подставьте это значение в равенство, и вы получите формулу В = А*sin(180°-α-γ)/sin(α).
Треугольники бывают равнобедренными, равносторонними и неравносторонними. Из всего разнообразия, для первого примера выберем прямоугольный (в таком треугольнике один из углов равен 90°, прилегающие к нему стороны называются катетами, а третья — гипотенузой).
Быстрая навигация по статье
Рассчитать катет треугольника по углу. Находим сторону треугольника, если две другие известны тремя способами, формулы
Прямоугольный треугольник встречается в реальности практически на каждом углу. Знание о свойствах данной фигуры, а также умение вычислять ее площадь, несомненно пригодится вам не только для решения задач по геометрии, но и в жизненных ситуациях.
Геометрия треугольника
В элементарной геометрии прямоугольный треугольник – это фигура, которая состоит из трех соединенных отрезков, формирующих три угла (два острых и один прямой). Прямоугольный треугольник – оригинальная фигура, характеризующаяся рядом важных свойств, которые составляют фундамент тригонометрии. В отличие от обычного треугольника стороны прямоугольной фигуры имеют собственные названия:
- Гипотенуза – самая длинная сторона треугольника, лежащая напротив прямого угла.
- Катеты – отрезки, образующие прямой угол. В зависимости от рассматриваемого угла катет может быть прилежащим к нему (образующий этот угол с гипотенузой) или противолежащим (лежащим напротив угла). Для непрямоугольных треугольников катетов не существуют.
Именно соотношение катетов и гипотенузы составляет основу тригонометрии: синусы, тангенсы и секансы определяются как отношение сторон прямоугольного треугольника.
Прямоугольный треугольник в реальности
Данная фигура получила широкое распространение в реальности. Треугольники находят применение в проектировании и технике, поэтому расчет площади фигуры приходится выполнять инженерам, архитекторам и проектировщикам.
Форму треугольника имеют основания тетраэдров или призм – трехмерных фигур, которые легко встретить в повседневности. Кроме того, угольник – наиболее простое представление «плоского» прямоугольного треугольника в реальности.
Угольник – это слесарный, чертежный, строительный и столярный инструмент, который используется для построения углов как школьниками, так и инженерами.
Площадь треугольника
Площадь геометрической фигуры – это количественная оценка того, какая часть плоскости ограничена сторонами треугольника. Площадь обычного треугольника можно найти пятью способами, используя формулу Герона или оперируя при расчетах такими переменными, как основание, сторона, угол и радиус вписанной или описанной окружности. Самая простая формула площади выражается как:
где a – сторона треугольника, h – его высота.
Формула для вычисления площади прямоугольного треугольника еще проще:
где a и b – катеты.
Работая с нашим онлайн-калькулятор, вы можете вычислить площадь треугольника, используя три пары параметров:
- два катета;
- катет и прилежащий угол;
- катет и противолежащий угол.
В задачах или бытовых ситуациях вам будут даны разные комбинации переменных, поэтому такая форма калькулятора позволяет вычислить площадь треугольника несколькими способами. Рассмотрим пару примеров.
Керамическая плитка
Допустим, вы хотите выполнить облицовку стен кухни керамической плиткой, которая имеет форму прямоугольного треугольника.
Для того чтобы определить расход плитки вы должны узнать площадь одного элемента облицовки и общую площадь обрабатываемой поверхности. Пусть вам необходимо обработать 7 квадратных метров.
Длина катетов одного элемента составляет по 19 см, тогда площадь плитки будет равна:
Это означает, что площадь одного элемента составляет 24,5 квадратных сантиметра или 0,01805 квадратных метра. Зная эти параметры, вы можете подсчитать, что для отделки 7 квадратных метров стены вам понадобится 7/0,01805 = 387 элементов облицовочной плитки.
Школьная задача
Пусть в школьной задаче по геометрии требуется найти площадь прямоугольного треугольника, зная только то, что сторона одного катета равна 5 см, а величина противолежащего угла составляет 30 градусов.
Наш онлайн-калькулятор сопровождается иллюстрацией, на которой указаны стороны и углы прямоугольного треугольника. Если сторона a = 5 см, то ее противолежащий угол – это угол альфа, равный 30 градусов.
Введите эти данные в форму калькулятора и получите результат:
Таким образом, калькулятор не только вычисляет площадь заданного треугольника, но и определяет длину прилежащего катета и гипотенузы, а также величину второго угла.
Заключение
Прямоугольные треугольники встречаются в нашей жизни буквально на каждом углу. Определение площади таких фигур пригодится вам не только при решении школьных заданий по геометрии, но и повседневной и профессиональной деятельности.
Вписанной в него окружности (r). Для этого увеличьте ее в шесть раз и разделите на квадратный корень из тройки: А = r*6/√3.
Зная радиус (R), тоже можно вычислить длину стороны (А) правильного треугольника. Этот радиус вдвое больше использованного в предыдущей формуле, поэтому утройте его и тоже поделите на квадратный корень из тройки: А = R*3/√3.
По (Р) равностороннего треугольника вычислить длину его стороны (А) еще проще, так как длины сторон в этой фигуре одинаковы. Просто разделите периметр натрое: А = Р/3.В равнобедренном треугольнике вычисление длины стороны по известному периметру немного сложнее – нужно знать еще и длину хотя бы одной из сторон.
Если известна длина стороны А, лежащей в основании фигуры, длину любой из боковых (В) находите пополам разности между периметром (Р) и размером основания: В = (Р-А)/2.
А если известна боковая сторона, то длину основания определяйте вычитанием из периметра удвоенной длины боковой: А = Р-2*В.
Знания площади (S), занимаемой на плоскости правильным треугольником, тоже достаточно для нахождения длины его стороны (А). Извлеките квадратный корень из соотношения площади и корня из тройки, а полученный результат удвойте: А = 2*√(S/√3).
В , в от любого другого, для вычисления длины одной из сторон достаточно знать длины двух других. Если искомая сторона – (С), для этого находите квадратный корень длин известных сторон (А и В), возведенных в квадрат: С = √(А²+В²). А если вычислить требуется длину одного из катетов, то квадратный корень следует извлекать из длин гипотенузы и другого катета: А = √(С²-В²).
Источники:
- как вычислить сторону равностороннего треугольника
В общем случае, т.е. когда нет данных о том, является ли треугольник равносторонним, равнобедренным, прямоугольным, приходится использовать тригонометрические функции для вычисления длин его сторон. Правила их применения определяются теоремами, которые так и названы – теорема синусов, косинусов и тангенсов.
Инструкция
Один из способов вычисления длин сторон произвольного треугольника предполагает теоремы синусов. Согласно ей соотношения длин сторон противолежащих им углов треугольника равны.
Это позволяет вывести формулу длины стороны для тех случаев, из условий задачи известна хотя бы одна сторона и два угла в вершинах фигуры.
[attention type=yellow][/attention]
Если ни один из этих двух углов (α и β) не лежит между известной стороной А и вычисляемой В, то умножьте длину известной стороны на синус прилегающего к ней известного угла β и разделите на синус другого известного угла а: В = А*sin(β)/sin(α).
Если один (γ) из двух (α и γ) известных углов образован , длина одной из которых (А) дана в , а вторую (В) требуется вычислить, то примените ту же теорему.
Решение можно свести к формуле, полученной в предыдущем шаге, если вспомнить еще и теорему о сумме углов в треугольнике – эта величина всегда 180°.
В формуле неизвестен угол β, который по этой теореме можно вычислить, если отнять от 180° величины двух известных углов. Подставьте это значение в равенство, и вы получите формулу В = А*sin(180°-α-γ)/sin(α).
Треугольник – это примитивный многоугольник, ограниченный на плоскости тремя точками и тремя отрезками попарно соединяющими эти точки. Углы в треугольнике бывают острыми, тупыми и прямыми. Сумма углов в треугольнике величина непрерывная и равна 180 градусам.
Вам понадобится
- Базовые познания в геометрии и тригонометрии.