Числа — виды, понятия и операции, натуральные и другие виды чисел

Числа бывают натуральные и. Виды чисел

Числа — виды, понятия и операции, натуральные и другие виды чисел

Интуитивное представление о числе, по–видимому, так же старо, как и само человечество, хотя с достоверностью проследить все ранние этапы его развития в принципе невозможно.

Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей.

То, что первобытные люди сначала знали только “один”, “два” и “много”, подтверждается тем, что в некоторых языках, например в греческом, существуют три грамматические формы: единственного числа, двойственного числа и множественного числа. Позднее человек научился делать различия между двумя и тремя деревьями и между тремя и четырьмя людьми.

Счет изначально был связан с вполне конкретным набором объектов, и самые первые названия чисел были прилагательными. Например, слово “три” использовалось только в сочетаниях “три дерева” или “три человека”; представление о том, что эти множества имеют между собой нечто общее – понятие троичности – требует высокой степени абстракции.

О том, что счет возник раньше появления этого уровня абстракции, свидетельствует тот факт, что слова “один” и “первый”, равно как “два” и “второй”, во многих языках не имеют между собой ничего общего, в то время как лежащие за пределами первобытного счета “один”, “два”, “много”, слова “три” и “третий”, “четыре” и “четвертый” ясно указывают на взаимосвязь между количественными и порядковыми числительными.

Названия чисел, выражающие весьма абстрактные идеи, появились, несомненно, позже, чем первые грубые символы для обозначения числа объектов в некоторой совокупности.

В глубокой древности примитивные числовые записи делались в виде зарубок на палке, узлов на веревке, выложенных в ряд камешков, причем подразумевалось, что между пересчитываемыми элементами множества и символами числовой записи существует взаимно однозначное соответствие.

Но для чтения таких числовых записей названия чисел непосредственно не использовались. Ныне мы с первого взгляда распознаем совокупности из двух, трех и четырех элементов; несколько труднее распознаются на взгляд наборы, состоящие из пяти, шести или семи элементов.

А за этой границей установить на глаз их число практически уже невозможно, и нужен анализ либо в форме счета, либо в определенном структурировании элементов.

Счет на бирках, по–видимому, был первым приемом, который использовался в подобных случаях: зарубки на бирках располагались определенными группами подобно тому, как при подсчете избирательных бюллетеней их часто группируют пачками по пять или десять штук. Очень широко был распространен счет на пальцах, и вполне возможно, что названия некоторых чисел берут свое начало именно от этого способа подсчета.

Важная особенность счета заключается в связи названий чисел с определенной схемой счета. Например, слово “двадцать три” – не просто термин, означающий вполне определенную (по числу элементов) группу объектов; это термин составной, означающий “два раза по десять и три”.

Здесь отчетливо видна роль числа десять как коллективной единицы или основания; и действительно, многие считают десятками, потому что, как отметил еще Аристотель, у нас по десять пальцев на руках и на ногах. По той же причине использовались основания пять или двадцать.

На очень ранних стадиях развития истории человечества за основания системы счисления принимались числа 2, 3 или 4; иногда для некоторых измерений или вычислений использовались основания 12 и 60.

Считать человек начал задолго до того, как он научился писать, поэтому не сохранилось никаких письменных документов, свидетельствовавших о тех словах, которыми в древности обозначали числа.

Для кочевых племен характерны устные названия чисел, что же касается письменных, то необходимость в них появилась лишь с переходом к оседлому образу жизни, образованием земледельческих сообществ.

Возникла и необходимость в системе записи чисел, и именно тогда было заложено основание для развития математики.

Основные виды чисел

В отличие от октав, седенионыS не обладают свойством альтернативности, но сохраняют свойство степенной ассоциативности .

Для представления целого положительного числа х в памяти компьютера, оно переводится в двоичную систему счисления.

Полученное число в двоичной системе счисления х 2 представляет собой машинную запись соответствующего десятичного числа х 10 . Для записи отрицательных чисел используется т. н.

дополнительный код числа, который получается путём прибавления единицы к инвертированному представлению модуля данного отрицательного числа в двоичной системе счисления.

Представление действительных чисел в памяти компьютера (в вычислительной технике для их обозначения используется термин число с плавающей запятой) имеет некоторые ограничения связанные с используемой системой счисления, а также, ограниченностью объёма памяти выделяемого под числа.

Так, лишь некоторые из действительных чисел могут быть без потерь в точности представлены в памяти компьютера.

В наиболее распространённой схеме число с плавающей запятой записывается в виде блока битов часть из которых представляют собой мантиссу числа, часть – степень, а один бит выделяется для представления знака числа (в случае необходимости знаковый бит может отсутствовать).

Число – абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое понятие. Письменными знаками (символами) для записи чисел служат цифры.

Основные виды чисел

Получаемые при естественном счёте; натуральных чисел обозначается . Т.о. (иногда к множеству натуральных чисел также относят ноль, то есть ). Натуральные числа замкнуты относительно сложения и умножения (но не вычитания или деления). Натуральные числа коммутативны и ассоциативны относительно сложения и умножения, а умножение натуральных чисел дистрибутивно относительно сложения.

Целые числа, получаемые объединением натуральных чисел с множеством отрицательных чисел и нулём, обозначаются . Целые числа замкнуты относительно сложения, вычитания и умножения (но не деления).

Рациональные числа – числа, представленные в виде m/n (n≠0), где m – целое число, а n – натуральное число. Для рациональных чисел определены все четыре «классические» арифметические действия: сложение, вычитание, умножение и деление (кроме деления на ноль). Для обозначения рациональных чисел используется знак .

Действительные (вещественные) числа представляют собой расширение множества рациональных чисел, замкнутое относительно некоторых (важных для математического анализа) операций предельного перехода. Множество вещественных чисел обозначается .

Его можно рассматривать как пополнение поля рациональных чисел при помощи нормы, являющейся обычной абсолютной величины. Кроме рациональных чисел, включает множество иррациональных чисел , не представимых в виде отношения целых. Кроме подразделения на рациональные и иррациональные, также подразделяются на алгебраические и трансцендентные.

При этом каждое трансцендентное число является иррациональным, каждое рациональное число – алгебраическим.

Комплексные числа , являющиеся расширением множества действительных чисел. Они могут записаны в виде z = x + iy, где i – т. н. мнимая единица, для которой выполняется i 2 = − 1. Комплексные числа используются при решении задач квантовой механики, гидродинамики, теории упругости и пр.

Для перечисленных множеств чисел справедливо следующее выражение:

Натуральные числа, которые в качестве множителей имеют только себя и единицу. Ряд простых чисел имеет вид: Любое натуральное число N можно представить в виде произведения степеней простых чисел: 121968=24*32*50*71*112. Это свойство широко используется в практической криптографии.

Числа – виды, понятия и операции, натуральные и другие виды чисел.

Число – фундаментальное понятие математики, служащее для определения количественной характеристики, нумерации, сравнения объектов и их частей. К числам применимы различные арифметические операции: сложение, вычитание, умножение, деление, возведение в степень и другие.

Числа, участвующие в операции, называются операндами. В зависимости от производимого действия, они получают различные наименования. В общем случае схему операции можно представить следующим образом: = .

В операции деления первый операнд называется делимым (так называется число, которое делят). Второй (на которое делят) – делитель, а результат – частное (оно показывает, во сколько раз делимое больше делителя).

Виды чисел

В операции деления могут участвовать различные числа. Результат деления может быть целым или дробным. В математике существуют следующие виды чисел:

  • Натуральные – числа, используемые при счёте. Среди них выделяется подмножество простых чисел, имеющих всего два делителя: единицу и самого себя. Все остальные, кроме 1, называются составными и имеют более двух делителей (примеры простых чисел: 2, 5, 7, 11, 13, 17, 19 и т.д.);
  • Целые – множество, состоящее их отрицательных, положительных чисел и нуля. При делении одного целого числа на другое, частное может быть целым, либо вещественным (дробным). Среди них можно выделить подмножество совершенных чисел – равных сумме всех своих делителей (включая 1), кроме самого себя. Древним грекам было известно только четыре совершенных числа. Последовательность совершенных чисел: 6, 28, 496, 8128, 33550336… До сих пор не известно ни одного нечётного совершенного числа;
  • Рациональные – представимые в виде дроби a/b, где а – числитель, а b – знаменатель (частное таких чисел обычно не вычисляется);
  • Действительные (вещественные) – содержащие целую и дробную часть. Множество включает рациональные и иррациональные числа (представимые в виде непериодической бесконечной десятичной дроби). Частное таких чисел, как правило, представляет собой вещественное значение.

Существует несколько особенностей, связанных с выполнением арифметического действия – деления. Их понимание важно для получения правильного результата:

  • Делить на ноль нельзя (в математике данная операция не имеет смысла);
  • Целочисленное деление – операция, в результате которой вычисляется только целая часть (дробная при этом отбрасывается);
  • Вычисление остатка от целочисленного деления позволяет получить в качестве результата целое число, оставшееся после завершения операции (например, при делении 17 на 2 целая часть равна 8, остаток – 1).

Источник: https://refegrad.ru/numbers-are-natural-and-types-of-numbers.html

Множества: понятие, определение, примеры

Числа — виды, понятия и операции, натуральные и другие виды чисел

Людям постоянно приходится иметь дело с различными совокупностями предметов, что повлекло за собой возникновение понятия числа, а затем и понятия множества, которое является одним из основных простейших математических понятий и не поддается точному определению. Нижеследующие замечания имеют своей целью пояснить, что такое множество, но не претендуют на то, чтобы служить его определением.

Множеством называется собрание, совокупность, коллекция вещей, объединенных по какому-либо признаку или по какому-либо правилу. Понятие множества возникает путем абстракции.

Рассматривая какую-либо совокупность предметов как множество, отвлекаются от всех связей и соотношений между различными предметами, составляющими множества, но сохраняют за предметами их индивидуальные черты. Таким образом, множество, состоящее из пяти монет, и множество, состоящее из пяти яблок, — это разные множества.

С другой стороны, множество из пяти монет, расположенных по кругу, и множество из тех же монет, положенных одна на другую, — это одно и то же множество.

Приведем несколько примеров множеств.

Можно говорить о множестве песчинок, составляющих кучу песка, о множестве всех планет нашей солнечной системы, о множестве всех людей, находящихся в данный момент в каком-либо доме, о множестве всех страниц этой книги.

В математике тоже постоянно встречаются различные множества, например множество всех корней заданного уравнения, множество всех натуральных чисел, множество всех точек на прямой и т.д.

Математическая дисциплина, изучающая общие свойства множеств, т.е. свойства множеств, не зависящие от природы составляющих их предметов, называется теорией множеств. Эта дисциплина начала бурно развиваться в конце XIX и начале XX в. Основатель научной теории множеств — немецкий математик Г. Кантор.

Работы Кантора по теории множеств выросли из рассмотрения вопросов сходимости тригонометрических рядов. Это весьма обычное явление: очень часто рассмотрение конкретных математических задач ведет к построению весьма абстрактных и общих теорий.

Значение таких абстрактных построений определяется тем, что они оказываются связанными не только с той конкретной задачей, из которой они выросли, но имеют приложения и в ряде других вопросов. В частности, именно так обстоит дело и с теорией множеств.

Идеи и понятия теории множеств проникли буквально во все разделы математики и существенно изменили ее лицо. Поэтому нельзя получить правильного представления о современной математике, не познакомившись с элементами теории множеств.

Особенно большое значение имеет теория множеств для теории функций действительного переменного.

Множество считается заданным, если относительно любого предмета можно сказать, принадлежит он множеству или не принадлежит. Иными словами, множество вполне определяется заданием всех принадлежащих ему предметов. Если множество состоит из предметов и только из этих предметов, то пишут .

Предметы, составляющие какое-либо множество, принято называть его элементами. Тот факт, что предмет т является элементом множества , записывается в виде и читается: ” принадлежит “, или ” есть элемент “.

Если же предмет не принадлежит множеству , то пишут: . Каждый предмет может служить лишь одним элементом заданного множества; иными словами, все элементы (одного и того же множества отличны друг от друга.

Элементы множества могут сами быть множествами, однако, во избежание противоречий, приходится требовать, чтобы само множество не было одним из своих собственных элементов: .

Множество, не содержащее ни одного элемента, называется пустым множеством. Например, множество всех действительных корней уравнения есть пустое множество. Пустое множество в дальнейшем будем обозначать через .

Если для двух множеств и каждый элемент множества является также элементом множества , то говорят, что входит в , что есть часть , что есть подмножество или что содержится в ; это записывается в виде

или

Например, множество есть часть множества .

Ясно, что всегда . Удобно считать, что пустое множество есть часть любого множества.

Два множества равны, если они состоят из одних и тех же элементов. Например, множество корней уравнения и множество между собою равны.

Определим правила действий над множествами.

Объединение или сумма множеств

Пусть имеются множества . Объединением (обозначается символом или ) или суммой этих множеств называется множество , состоящее из всех элементов, принадлежащих хотя бы одному из “слагаемых”

или

При этом, даже если элемент принадлежит нескольким слагаемым, то он входит в сумму лишь один раз. Ясно, что

и если , то .

Пересечение множеств

Пересечением (обозначается символом или ) или общей частью множеств . называется множество , состоящее из всех тех элементов, которые принадлежат одновременно всем множествам , то есть .

Ясно, что , и если , то .

Если пересечение множеств и пусто, т.е. , то говорят, что эти множества не пересекаются.

Для обозначения операции суммы и пересечения множеств употребляют также знаки и . Таким образом, есть сумма множеств , а — их пересечение.

Читателю рекомендуется доказать, что сумма и пересечение множеств связаны обычным распределительным законом

, а также законом .

Разность множеств

Разностью двух множеств и называется множество всех тех элементов из , которые не принадлежат :

или .

Если , то разность называют также дополнением к множеству относительно .

Нетрудно показать, что всегда и .

Таким образом, правила действий над множествами значительно отличаются от обычных правил арифметики.

Конечные и бесконечные множества

Множества, состоящие из конечного числа элементов, называются конечными множествами. Если же число элементов множества неограниченно, то такое множество называется бесконечным. Например, множество всех натуральных чисел бесконечно.

Рассмотрим два каких-либо множества и и поставим вопрос о том, одинаково или нет количество элементов в этих множествах.

Если множество конечно, то количество его элементов характеризуется некоторым натуральным числом — числом его элементов.

В этом случае для сравнения количества элементов множеств и достаточно сосчитать число элементов в , число элементов в и сравнить полученные числа.

Естественно также считать, что если одно из множеств и конечно, а другое бесконечно, то бесконечное множество содержит больше элементов, чем конечное.

Однако, если оба множества и бесконечны, то путь простого счета элементов ничего не дает.

Поэтому сразу возникают такие вопросы: все ли бесконечные множества имеют одинаковое количество элементов, или же существуют бесконечные множества с большим и меньшим количеством элементов? Если верно второе, то каким способом можно сравнивать между собой количество элементов в бесконечных множествах? Этими вопросами мы теперь и займемся.

Взаимно однозначное соответствие множеств

Пусть снова и — два конечных множества. Как узнать, какое из этих множеств содержит больше элементов, не считая числа элементов в каждом множестве? Для этого будем составлять пары, объединяя в пару один элемент из и один элемент из . Тогда, если какому-нибудь элементу из не найдется парного к нему элемента из , то в больше элементов, чем в . Поясним это рассуждение примером.

Пусть в зале находится некоторое число людей и некоторое число стульев. Чтобы узнать, чего больше, достаточно попросить людей занять места.

Если кто-нибудь остался без места, значит, людей больше, а если, скажем, все сидят и заняты все места, то людей столько же, сколько стульев.

Описанный способ сравнения количества элементов во множествах имеет то преимущество перед непосредственным счетом элементов, что он без особых изменений применяется не только к конечным, но и к бесконечным множествам.

Рассмотрим множество всех натуральных чисел и множество всех четных чисел . Какое множество содержит больше элементов? На первый взгляд кажется, что первое. Однако мы можем образовать из элементов этих множеств пары, как указано ниже.

Таблица 1

Ни один элемент и ни один элемент не остается без пары. Правда, мы могли бы также образовать пары и так:

Таблица 2

Тогда многие элементы из остаются без пар. С другой стороны, мы могли бы составить пары и так:

Таблица 3

Теперь многие элементы из остаются без пар.

Таким образом, если множества и бесконечны, то различным способам образования пар соответствуют разные результаты.

Если существует такой способ образования пар, при котором у каждого элемента и каждого элемента имеется парный к нему элемент, то говорят, что между множествами и можно установить взаимно однозначное соответствие.

Например, между рассмотренными выше множествами и можно установить взаимно однозначное соответствие, как это видно из табл. 1.

Если между множествами и можно установить взаимно однозначное соответствие, то говорят, что они имеют одинаковое количество элементов или равномощны. Если же при любом способе образования пар некоторые элементы из всегда остаются без пар, то говорят, что множество содержит больше элементов, чем , или что множество имеет большую мощность, чем .

Таким образом, мы получили ответ на один из поставленных выше вопросов: как сравнивать между собой количество элементов в бесконечных множествах. Однако это нисколько не приблизило нас к ответу на другой вопрос: существуют ли вообще бесконечные множества. имеющие различные мощности? Чтобы получить ответ на этот вопрос, исследуем некоторые простейшие типы бесконечных множеств.

Счетные множества. Если можно установить взаимно однозначное соответствие между элементами множества и элементами множества всех натуральных чисел , то говорят, что множество счетно. Иными словами, множество счетно, если все его элементы можно занумеровать посредством натуральных чисел, т. е. записать в виде последовательности .

Таблица 1 показывает, что множество всех четных чисел счетно (верхнее число рассматривается теперь как номер соответствующего нижнего числа).

Счетные множества это, так сказать, самые маленькие из бесконечных множеств: во всяком бесконечном множестве содержится счетное подмножество.

Если два непустых конечных множества не пересекаются, то их сумма содержит больше элементов, чем каждое из слагаемых. Для бесконечных множеств это правило может и не выполняться. В самом деле, пусть есть множество всех четных чисел, — множество всех нечетных чисел и — множество всех натуральных чисел. Как показывает таблица 4, множества и счетны. Однако множество вновь счетно.

Таблица 4

Нарушение правила “целое больше части” для бесконечных множеств показывает, что свойства бесконечных множеств качественно отличны от свойств конечных множеств. Переход от конечного к бесконечному сопровождается в полном согласии с известным положением диалектики — качественным изменением свойств.

Докажем, что множество всех рациональных чисел счетно. Для этого расположим все рациональные числа в такую таблицу:

Таблица 5

Здесь в первой строке помещены все натуральные числа в порядке их возрастания, во второй строке 0 и целые отрицательные числа в порядке их убывания, в третьей строке — положительные несократимые дроби со знаменателем 2 в порядке их возрастания, в четвертой строке — отрицательные несократимые дроби со знаменателем 2 в порядке их убывания и т. д. Ясно, что каждое рациональное число один и только один раз находится в этой таблице. Перенумеруем теперь
все числа этой таблицы в том порядке, как это указано стрелками. Тогда все рациональные числа разместятся в порядке одной последовательности (табл.6).

Таблица 6

Этим установлено взаимно однозначное соответствие между всеми рациональными числами и всеми натуральными числами. Поэтому множество всех рациональных чисел счетно.

Множества мощности континуума

Если можно установить взаимно однозначное соответствие между элементами множества и точками отрезка , то говорят, что множество имеет мощность континуума. В частности, согласно этому определению, само множество точек отрезка имеет мощность континуума.

Из рис. 1 видно, что множество точек любого отрезка имеет мощность континуума. Здесь взаимно однозначное соответствие устанавливается геометрически, посредством проектирования.

Нетрудно показать, что множества точек любого интервала и всей числовой прямой — имеют мощность континуума.

Значительно более интересен такой факт: множество точек квадрата имеет мощность континуума. Таким образом, грубо говоря, в квадрате «столько же» точек, сколько и в отрезке.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Источник: http://MathHelpPlanet.com/static.php?p=mnozhestva

Числа

Числа — виды, понятия и операции, натуральные и другие виды чисел
1. $a < b$ or $a=b$ or $a > b$ трихотомия2. если $a\leq b$ и $b\leq a$, то $a=b$ антисимметрия3. если $a\leq b$ и $b\leq c$, то $a\leq c$ транзитивность4. если $a\leq b$, то $a+c\leq b+c$

5. если $a\leq b$, то $a\cdot c\leq b\cdot c$

Примеры целых чисел:
$1, -20, -100, 30, -40, 120…$

Решение уравнения$a+x=b$, где $a$ и $b$ – известные натуральные числа, а $x$ – неизвестное натуральное число, требует введения новой операции – вычитания(-). Если существует натуральное число $x$, удовлетворяющее этому уравнению, то $x=b-a$.

Однако, это конкретное уравнение не обязательно имеет решение на множестве $\mathbb{N}$, поэтому практические соображения требуют расширения множества натуральных чисел таким образом, чтобы включить решения такого уравнения.

Это приводит к введению множества целых чисел: $\mathbb{Z}=\lbrace 0,1,-1,2,-2,3,-3…\rbrace$.

Поскольку $\mathbb{N}\subset \mathbb{Z}$, логично предположить, что введенные ранее операции $+$ и $\cdot$ и отношения $1. $0+a=a+0=a$ существует нейтральный элемент для сложения2. $a+(-a)=(-a)+a=0$ существует противоположное число $-a$ для $a$

Свойство 5.:
5. если $0\leq a$ и $0\leq b$, то $0\leq a\cdot b$

Множество $\mathbb{Z} $ замкнуто также и относительно операции вычитания, то есть $(\forall a,b\in \mathbb{Z})(a-b\in \mathbb{Z})$.

Рациональные числа $\mathbb{Q}$

Примеры рациональных чисел:
$\frac{1}{2}, \frac{4}{7}, -\frac{5}{8}, \frac{10}{20}…$

Теперь рассмотрим уравнения вида$a\cdot x=b$, где $a$ и $b$ – известные целые числа, а $x$ – неизвестное. Чтобы решение было возможным, необходимо ввести операцию деления ($:$), и решение приобретает вид $x=b:a$, то есть $x=\frac{b}{a}$.

Опять возникает проблема, что $x$ не всегда принадлежит $\mathbb{Z}$, поэтому множество целых чисел необходимо расширить. Таким образом вводится множество рациональных чисел $\mathbb{Q}$ с элементами $\frac{p}{q}$, где $p\in \mathbb{Z}$ и $q\in \mathbb{N}$.

Множество $\mathbb{Z}$ является подмножеством, в котором каждый элемент $q=1$, следовательно $\mathbb{Z}\subset \mathbb{Q}$ и операции сложения и умножения распространяются и на это множество по следующим правилам, которые сохраняют все вышеперечисленные свойства и на множестве $\mathbb{Q}$:$\frac{p_1}{q_1}+\frac{p_2}{q_2}=\frac{p_1\cdot q_2+p_2\cdot q_1}{q_1\cdot q_2}$

$\frac{p-1}{q_1}\cdot \frac{p_2}{q_2}=\frac{p_1\cdot p_2}{q_1\cdot q_2}$

Деление вводится таким образом:
$\frac{p_1}{q_1}:\frac{p_2}{q_2}=\frac{p_1}{q_1}\cdot \frac{q_2}{p_2}$

На множестве $\mathbb{Q}$ уравнение $a\cdot x=b$ имеет единственное решение для каждого $aeq 0$ (деление на ноль не определено). Это значит, что существует обратный элемент$\frac{1}{a}$ or $a{-1}$:
$(\forall a\in \mathbb{Q}\setminus\lbrace 0\rbrace)(\exists \frac{1}{a})(a\cdot \frac{1}{a}=\frac{1}{a}\cdot a=a)$

Порядок множества $\mathbb{Q}$ можно расширить таким образом:
$\frac{p_1}{q_1} < \frac{p_2}{q_2}\Leftrightarrow p_1\cdot q_2 < p_2\cdot q_1$

Множество $\mathbb{Q}$ имеет одно важное свойство: между любыми двумя рациональными числами находится бесконечно много других рациональных чисел, следовательно, не существует двух соседних рациональных чисел, в отличие от множеств натуральных и целых чисел.

Примеры иррациональных чисел:$\sqrt{2} \approx 1.41422135…$

$\pi \approx 3.1415926535…$

Ввиду того, что между любыми двумя рациональными числами находится бесконечно много других рациональных чисел, легко можно сделать ошибочный вывод, что множество рациональных чисел настолько плотное, что нет необходимости в его дальнейшем расширении.

Даже Пифагор в свое время сделал такую ошибку. Однако, уже его современники опровергли этот вывод при исследовании решений уравнения$x\cdot x=2$ ($x2=2$) на множестве рациональных чисел.

Для решения такого уравнения необходимо ввести понятие квадратного корня, и тогда решение этого уравнения имеет вид $x=\sqrt{2}$.

Уравнение типа $x2=a$, где $a$ – известное рациональное число, а $x$ – неизвестное, не всегда имеет решение на множестве рациональных чисел, и опять возникает необходимость в расширении множества. Возникает множество иррациональных чисел, и такие числа как $\sqrt{2}$, $\sqrt{3}$, $\pi$… принадлежат этому множеству.

Действительные числа $\mathbb{R}$

Объединением множеств рациональных и иррациональных чисел является множество действительных чисел.Поскольку $\mathbb{Q}\subset \mathbb{R}$, снова логично предположить, что введенные арифметические операции и отношения сохраняют свои свойства на новом множестве.

Формальное доказательство этого весьма сложно, поэтому вышеупомянутые свойства арифметических операций и отношения на множестве действительных чисел вводятся как аксиомы.

В алгебре такой объект называется полем, поэтому говорят, что множество действительных чисел является упорядоченным полем.

Для того, чтобы определение множества действительных чисел было полным, необходимо ввести дополнительную аксиому, различающую множества$\mathbb{Q}$ и $\mathbb{R}$. Предположим, что $S$ – непустое подмножество множества действительных чисел.

Элемент $b\in \mathbb{R}$ называется верхней границей множества $S$, если $\forall x\in S$ справедливо $x\leq b$. Тогда говорят, что множество $S$ ограничено сверху. Наименьшая верхняя граница множества $S$ называется супремум и обозначается $\sup S$.

Аналогично вводятся понятия нижней границы, множества, ограниченного снизу, и инфинума $\inf S$ . Теперь недостающая аксиома формулируется следующим образом:

Любое непустое и ограниченное сверху подмножество множества действительных чисел имеет супремум.
Также можно доказать, что поле действительных чисел, определенное вышеуказанным образом, является единственным.

Комплексные числа$\mathbb{C}$

Примеры комплексных чисел:$(1, 2), (4, 5), (-9, 7), (-3, -20), (5, 19),…$

$1 + 5i, 2 – 4i, -7 + 6i…$ где $i = \sqrt{-1}$ или $i2 = -1$

Множество комплексных чисел представляет собой все упорядоченные пары действительных чисел, то есть $\mathbb{C}=\mathbb{R}2=\mathbb{R}\times \mathbb{R}$, на котором операции сложения и умножения определены следующим образом: $(a,b)+(c,d)=(a+b,c+d)$

$(a,b)\cdot (c,d)=(ac-bd,ad+bc)$

Существует несколько форм записи комплексных чисел, из которых самая распространенная имеет вид$z=a+ib$, где $(a,b)$ – пара действительных чисел, а число $i=(0,1)$ называется мнимой единицей.

Легко показать, что $i2=-1$. Расширение множества $\mathbb{R}$ на множество $\mathbb{C}$ позволяет определить квадратный корень из отрицательных чисел, что и послужило причиной введения множества комплексных чисел.

Также легко показать, что подмножество множества $\mathbb{C}$, заданное как $\mathbb{C}_0=\lbrace (a,0)|a\in \mathbb{R}\rbrace$, удовлетворяет всем аксиомам для действительных чисел, следовательно $\mathbb{C}_0=\mathbb{R}$, или $R\subset\mathbb{C}$.

Алгебраическая структура множества $\mathbb{C}$ относительно операций сложения и умножения имеет следующие свойства:1. коммутативность сложения и умножения2. ассоциативность сложения и умножения3.

$0+i0$ – нейтральный элемент для сложения4. $1+i0$ – нейтральный элемент для умножения5. умножение дистрибутивно по отношению к сложению

6.

существует единственный обратный элемент как для сложения, так и для умножения.

Источник: https://www.math10.com/ru/algebra/chisla.html

Множества чисел. Законы действий над различными числами

Числа — виды, понятия и операции, натуральные и другие виды чисел

Множество натуральных чисел образуют числа 1, 2, 3, 4, …, используемые для счёта предметов. Множество всех натуральных чисел принято обозначать буквой N:

N = {1, 2, 3, 4, …, n, …}.

Это бесконечное множество, оно имеет наименьший элемент 1 и не имеет наибольшего элемента. Иногда к натуральным числам добавляют 0, тогда он будет наименьшим элементом.

1. Для любых натуральных чисел a и b верно равенство a + b = b + a. Это свойство называют переместительным (коммутативным) законом сложения.

2. Для любых натуральных чисел a, b, c верно равенство (a + b) + c = a + (b + c). Это свойство называют сочетальным (ассоциативным) законом сложения.

Законы умножения натуральных чисел

3. Для любых натуральных чисел a и b верно равенство ab = ba. Это свойство называют переместительным (коммутативным) законом умножения.

4. Для любых натуральных чисел a, b, c верно равенство (ab)c = a(bc). Это свойство называют сочетальным (ассоциативным) законом умножения.

5. При любых значениях a, b, c верно равенство (a + b)c = ac + bc. Это свойство называют распределительным (дистрибутивным) законом умножения (относительно сложения).

6. При любых значениях a верно равенство a*1 = a. Это свойство называют законом об умножении на единицу.

Результатом сложения или умножения двух натуральных чисел всегда является натуральное число. Или, говоря иначе, эти операции можно выполнить, оставаясь во множестве натуральных чисел. Относительно вычитания и деления этого сказать нельзя: так, из числа 3 нельзя, оставаясь во множестве натуральных чисел, вычесть число 7; число 15 нельзя разделить на 4 нацело.

Делимость суммы. Если каждое слагаемое делится на некоторое число, то и сумма делится на это число.

Делимость произведения. Если в произведении хотя бы один из сомножителей делится нацело на некоторое число, то и произведение делится на это число.

Эти условия, как для суммы, так и для произведения, являются достаточными, но не необходимыми. Например, произведение 12*18 делится на 36, хотя ни 12, ни 18 на 36 не делятся.

Признак делимости на 2. Для того, чтобы натуральное число делилось на 2, необходимо и достаточно, чтобы его последняя цифра была чётной.

Признак делимости на 5. Для того, чтобы натуральное число делилось на 5, необходимо и достаточно, чтобы его последняя цифра была либо 0, либо 5.

Признак делимости на 10. Для того, чтобы натуральное число делилось на 10, необходимо и достаточно, чтобы цифра единиц была 0.

Признак делимости на 4. Для того, чтобы натуральное число, содержащее не менее трёх цифр, делилось на 4, необходимо и достаточно, чтобы последние цифры были 00, 04, 08 или двузначное число, образованное последними двумя цифрами данного числа, делилось на 4.

Признак делимости на 2 (на 9). Для того, чтобы натуральное число делилось на 3 (на 9), необходимо и достаточно, чтобы сумма его цифр делилась на 3 (на 9).

Рассмотрим числовую прямую с началом отсчёта в точке O. Координатой числа нуль на ней будет точка O. Числа, расположенные на числовой прямой в заданном направлении, называют положительными числами. Пусть на числовой прямой задана точка A с координатой 3. Она соответствует положительному числу 3.

Отложим теперь три раза единичный отрезок от точки O, в направлении, противоположном заданному. Тогда получим точку A', симметричную точке A относительно начала координат O. Координатой точки A' будет число – 3. Это число, противоположное числу 3.

Числа, расположенные на числовой прямой в направлении, противоположном заданному, называют отрицательными числами.

Числа, противоположные натуральным, образуют множество чисел N':

N' = {- 1, – 2, – 3, – 4, …}.

Если объединить множества N, N' и одноэлементное множество {0}, то получим множество Z всех целых чисел:

Z = {0} ∪ N ∪ N'.

Для целых чисел верны все перечисленные выше законы сложения и умножения, которые верны для натуральных чисел. Кроме того, добавляются следующие законы вычитания:

a – b = a + (- b);

a + (- a) = 0.

Чтобы сделать выполнимой операцию деления целых чисел на любое число, не равное нулю, вводятся дроби:

, где a и b – целые числа и b не равно нулю.

Если к множеству целых чисел присоединить множество всех положительных и отрицательных дробей, то получается множество рациональных чисел Q:

.

При этом каждое целое число является также рациональным числом, так как, например, число 5 может быть представлено в виде , где числитель и знаменатель – целые числа. Это бывает важно при операциях над рациональными числами, из которых одно может быть целым числом.

Основное свойство дроби. Если числитель и знаменатель данной дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной:

.

Это свойство используется при сокращении дробей.

Сложение дробей. Сложение обыкновенных дробей определяется следующим образом:

.

То есть, для сложения дробей с разными знаменателями дроби приводятся к общему знаменателю. На практике при сложении (вычитании) дробей с разными знаменателями дроби приводятся к наименьшему общему знаменателю. Например, так:

.

Для сложения дробей с одинаковыми числителями достаточно сложить числители, а знаменатель оставить прежним.

Умножение дробей. Умножение обыкновенных дробей определяется следующим образом:

.

То есть, для умножения дроби на дробь нужно числитель первой дроби умножить на числитель второй дроби и записать произведение в числитель новой дроби, а знаменатель первой дроби умножить на знаменатель второй дроби и записать произведение в знаменатель новой дроби.

Деление дробей. Деление обыкновенных дробей определяется следующим образом:

.

То есть, для деления дроби на дробь нужно числитель первой дроби умножить на знаменатель второй дроби и произведение записать в числитель новой дроби, а знаменатель первой дроби умножить на числитель второй дроби и произведение записать в знаменатель новой дроби.

Возведение дроби в степень с натуральным показателем. Эта операция определяется следующим образом:

.

То есть, для возведения дроби в степень числитель возводится в эту степень и знаменатель возводится в эту степень.

Периодические десятичные дроби

Теорема. Любое рациональное число можно представить в виде конечной или бесконечной периодической дроби.

Например,

.

Последовательно повторяющаяся группа цифр после запятой в десятичной записи числа называется периодом, а конечная или бесконечная десятичная дробь, имеющая такой период в своей записи, называется периодической.

При этом любую конечную десятичную дробь считают бесконечной периодической дробью с нулём в периоде, например:

Результат сложения, вычитания, умножения и деления (кроме деления на нуль) двух рациональных чисел – также рациональное число.

Множество действительных чисел

На числовой прямой, которую мы рассмотрели в связи с множеством целых чисел, могут быть точки, не имеющие координат в виде рационального числа. Так, не существует рационального числа, квадрат которого равен 2.

Следовательно, число не является рациональным числом. Так же не существует рациональных чисел, квадраты которых равны 5, 7, 9. Следовательно, иррациональными являются числа , , . Иррациональным является и число .

Никакое иррациональное число не может быть представлено в виде периодической дроби. Их представляют в виде непериодических дробей.

Объединение множеств рациональных и иррациональных чисел представляет собой множество действительных чисел R.

Аксиомы о действиях над действительными числами

Аксиомы сложения. Для любых a, b, c из множества R действительных чисел справедливы следующие свойства:

I. a + b = b + a.

II. (a + b) + c = a + (b + c).

III. a + 0 = a.

IV. Для любого a ∈ R существует такое число b ∈ R, что a + b = 0. Это число b называется противоположным числу a и обозначается – a.

Аксиома IV позволяет ввести операцию вычитания в множестве действительных чисел: под разностью a – b понимается сумма a + (- b).

Аксиомы умножения. Для любых a, b, c из множества R действительных чисел справедливы следующие свойства:

V. ab = ba.

VI. (ab)c = a(bc).

VII. a*1 = a.

VIII. Для любого отличного от нуля числа a ∈ R существует такое число b ∈ R, что ab = 1. Это число b называется обратным числу a и обозначается .

IX. (a + b)c = ac + bc.

Аксиома VIII позволяет ввести операцию деления в множестве действительных чисел: под понимается произведение , где b ≠ 0.

Аксиома Архимеда. Для любых положительных действительных чисел a и b существует такое натуральное число n, что na > b.

Множество комплексных чисел

Комплексные числа вводятся в связи с тем, что действительных чисел недостаточно, чтобы решить любое квадратное уравнение с действительными коэффициентами. Простейшее из квадратных уравнений, не имеющих корней среди действительных чисел, есть

x² + 1 = 0.

Решение будет следующим: x² = – 1, x =√-1,

здесь √-1 – квадратный корень из минус единицы – мнимая единица, обозначаемая буквой i.

Числа вида a+bi (a, b∈R) составляют множество комплексных чиселC.

Нет времени вникать в решение? Можно заказать работу! Материал “Множества и операции над множествами”

Источник: https://function-x.ru/sets_of_numbers.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.